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COROLLARY 2. Suppose f_,(x) is the associated factor sequence for f(D)
and g_,(x) is the associated factor sequence for g(D), and suppose

g-nl®) = Z i fi(¥),

for constants c_,, .. Then the sequence r_,(x) = Z,o::o C_p X% is the associated
factor sequence for g( f~1(D)).

11. AppLicATIONS TO FORMAL POWER SERIES

Given a formal power series

=3 g

we can define a linear functional L in P* by (L | x*> = g, . We call L the
generating functional of the sequence a; . The series f(t) is the indicator of the
linear functional L and L = f(4).

When g, = 0 and 4, 5 0 we call f(t) a delta series. We have seen that the
composition f(g(#)) is well defined when the constant coefficient of g(t) vanishes,
in particular when g(¢) is a delta series, and that

() = z SULCHIL )

If f(2) is the indicator of the delta functional L, we have seen (Corollary 1
to Theorem 6) that
f,

-5 L

That is, the reciprocal series f~1(t) is the indicator of L, the reciprocal functional
toL.

If f(t) and g(t) are the indicators of the delta functionals L and M, then
Theorem 6 tells us that f(g(2)) is the indicator of the delta functional f(g(A4)) =
M oL, and (*) becomes

{M-oL| x’“}

faey = 3, Mk (+)

k=0

The problem of determining the composition of formal power series is thus
equivalent to the problem of determining the composition of delta functionals.
It turns out that the latter can often be explicitly computed by the present
methods, as we shall see.
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We can relate the composition of delta functionals to the umbral composition
of sequences of binomial type. Suppose p,(x) and g,(x) are the conjugate
sequences for the delta functionals L = f(4) and M = g(d), hence the
associated sequences for I and M. Then g,(p(x)) is the associated sequence
for Lo M, and thus the conjugate sequence for Lo M = (gt o f)Y(4) =
(fog)A) = M o L. By definition therefore,

aiple) = 3 LD (er)

Comparing (%) and (xxk), we see that the coeflicient of #*/n! in f(g(t)) is
the linear coefficient in g¢,(p(x)).
By definition of umbral composition, we have

0p() = 3 7 5 ML |0 o
k=0 " j=0J*

and so (#xx) gives

_[——*

QT L |37 = 3 0 M [0 | ),
Thus the coefficient of t*/n! in f(g(t)) is

A ML ). )

-[~

As an example, we compute the power series (1 - g(t))” — 1, where 7 is a
real number, and g(t) is a delta series. Here f(t) is the delta series f(f) =
(1 4+ &) — 1. Expanding L = f(4) in powers of 4 by means of the binomial
series, we find that (L |’y = (r); — §,, and thus the coefficient of "/n!
in (1 +g() —1is

‘; ( ) M| amy. (%kokxk)

Formula (#*%*) yields at once Fad di Bruno’s formula for the composition
of two formal power series. The special cases of this formula to be found in
the literature are obtained by explicitly computing a sequence of binomial
type. For example, setting g(t) = log(1 -+ t), we find immediately from ()
that the coefficients of f(log(l - ¢)) are given by umbral composition of ¢,(a),
when ¢,(x) are the Stirling polynomials, and a is the umbral sequence a,
of coefficients of f(¢). Similarly, the coefficients of f(e! — 1) are given by ¢,(a),
when ¢, (x) are the exponential polynomials.
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8.2. We now compute the reciprocal polynomials to the Bell polynomials;
that is, the associated sequence p,(x) for the delta functional L = AN =
x4 + 2,432V + x,44/3! + ---. We may take x, = 1. We wish to use the
Transter Formula p,(x) = xP~"x", where P = u(N), so we compute P,

The indicator of P~ is (1 -+ g(¢))™, where g(¢) is the indicator of M =
N — e. Hence, the coeflicient of D*/k! in the expansion of P-" is given by
(#kkx), with » = —n and n = k. The computation of (x#xxx) is straight-
forward by binomial expansion and by the identity

LA LR
®T, k)

(N| &k =

‘We obtain
P = i i 2]: (—1 ) —'. D 'Bk+i,1'Dk
#0301 420 — )l (k + i)}

and then

«© k7 ) ;o 1 i "
b = 3 T 3 (1 (R B

Similarly, the associated factor sequence to the Bell polynomials is

x) = SR iy (P B v
“( - z:: 2:;1 Z()( 1) (]‘—‘l')'(k +i)!Blc%-1,z .

Umbral techniques can be used in several ways to compute power series
expansions.

Consider the function [log(l + #)]". If we take f(f) == t" + ¢ and g(¢) =
log(1 + 1), then both f(¢) and g(t) are delta series, and the expansion of f(g(1))
differs from the desired one only by the addition of log(l + ¢). To find the
coeflicients of f(g(t)) we compute the umbral composition ¢,(p(x)), where
g.(x) is the conjugate sequence for g(4) and p,(x) is the conjugate sequence
for f(4). The sequence g,(x) is the associated sequence for g=(4) = e4 — ¢ =
e1 — ¢, and we have seen that g,(x) = (&), — Y, 5(n, k)x*, where s(n, k) are
Stirling numbers of the first kind. It is even easier to compute the polynomials

pna(x). For
Ar L A)I | ’C”>

Z((

[\/]:

k n!
((n — B)(n — 1)) AR
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Thus the linear coefficient in g¢,(p(x)) is #!s(n,r) + s(n, 1) = rls(n,r) +
(—1)"Yn — 1)}, and so

flog(1 + ) = ¥, 2] i

k=1

Consider next the function log(l + sin f). We have f(¢) = log(l 4 ¢) and
g(t) = sin t. Since M = g(A4) = sin 4, by expansion we have

Afi — __‘14 : ] =k ot A(2k~j)
Mi— oy éo (k)(—l)f piA(2E=]

But {em4 | x™ == ((mA)y*/n! | x™) = m™ and so

(21i)j EO (lfe) (— 1)~k in(2k — j)".

Now if L = f(4) = log(l - A), then

(M| amy =

CL{shy = (1) 47| o) = (=1 — D)t

Thus the coefficient of t*/n! in'log(1 4 sin t) is

A" ; (_.1)’k+1 ln_g( )(2k i

Next we give the generating functions of associated and Sheffer sequences.
If p,(x) is the associated sequence for the delta functional L = f(4), then
by the Expansion Theorem

_ Z Pk(y) \Y) £y,
Passing to indicators gives
z Pk(y) F()".
Finally, replacing f(#) by ¢ gives
VF U — Z Pk(y)

Thus, if f(z) is a delta series its reciprocal is the series

—l(t) — Z pl (0) t’”
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where p,(x) are the associated polynomials to f(4). Our recipe for finding
the reciprocal of a formal power series is thus ‘the following: Compute the
associated polynomials, possibly by using the Recurrence Formula or the
Transfer Formula, and then take the coefficients of » in these polynomials,
It turns out that computing the whole polynomial sequence is often speedier
than computing a single coefficient.

We turn to some more examples.

2.6. The exponential polynomials ¢,(x) = 5. S(n, k)x* are the associated
polynomials for f-1(4) = log(1 + A4). Thus

et - Br®)
e('n:Z I;e! 1k,
k=0

4.5. 'The Abel polynomials p,(x) = x(x — an)*1 have the generating
function
S x(x — ak)kt

e.’tf—l(t) — Z ___,I;'_ tk,

k=0
where f(t) = te®.
7.5. The basic Laguerre polynomials

n

" onl o m— 1
L=y % ()
kgo k! (k — 1)
have the generating function

Ly(x)
k!

grt/it=1) #k

™M

k=0

i

If s5,(x) is the Sheffer sequence for NV = f(#) with respect to the delta func-
tional L = g(t), then by Theorem 10

EvyN_l = Z —-~—sklg"y) Lk
k=0
Taking indicators and simplifying as before, we find the generating function

___1 VI MY — E(L) [
O R

For the higher Laguerre polynomials L{¥(x) we have f(¢) = (1 — ¢)*1
and g(t) = t(t — 1)71, hence

o L(a)(x)
__ fy—a—1 pat/(t-1) .. ke N7 gk
(I —t)y=te 1;) A
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For the Hermite polynomials of variance v, H{”(x), we have f(t) = e’
and g(t) = t. Thus

o ()
e 2wt . Y " (x) tk, ‘
o k! i

Lagrange’s inversion formula is immediate in the present notation. It states
that if f(£) is a delta series, then the nth coefficient in f —I(t)* equals the (n — k)th
coeflicient in ( f(#)/¢)~", multiplied by k/n. In our notation, this reads

<]:/.~ | am> _ E (M | xny

n! n (n—k

where the indicator of L = AM is f(t). The verification of this fact is now !
a trivial computation with adjoints. If p,(x) is the associated sequence for L,
then using the Transfer Formula we find

LV [amy = (A | p(x)> = (AP (M) vt
= CRAMT | (M)~ an—1y — R(APIM— | a1

= M| Dty =%y agen e,

as desired.

We can just as easily prove the variants of the Lagrange inversion formulas,
for example: Given two delta series f(#) and g(t), the nth coefficient in (@),
multiplied by 7, equals the (n — 1)st coefficient in g'(£)( f (#)/t)~™. In symbols:

x"“1> .

But this is also an immediate consequence of adjointness. Indeed, the right
side can be written as

) 1w = gy (L)

<g(A) | P71,

where P = u(f(4){A). We recognize an instance of the Transfer Formula:
(g(A) | pa(x)>, where p,(x) are the associated polynomials for f(A4). Letting
o« be the umbral operator mapping x” to p,(x), and recalling that the auto-
morphism «* maps f(A4) to A, we have

(g(A) | pulx)> = {g(A) | axm)
= {a¥g(d) | ") = {g(f~(4)) | «™).

It is hard to imagine a simpler proof,
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A variant of the same reasoning gives Hermite’s version of the Lagrange

inversion formula, namely,
Ay
x“> = <g(‘4) (_f% )‘> x">

< "1(14))
AT

The generating functions of factor sequences cannot be expressed by ordinary
generating functions, and lead us to introduce an analogous formal device.
Let f(2) be a delta series and let g(¢) be a formal power series. We define the
Cigler transform of the pair (f, g), in symbols

F(x) = f_ow g(t) e dt

to be the formal power series obtained after term-by-term integration of

[0 NS (5) e ds.

v —0

The point is that one can compute with the Cigler transform in much the same
way as with an ordinary integral, for example,

0 0 0
f o) eI dt - f o(t) e dt = [ o(t) erron®) gy,

thus the Cigler transform is an “integral” analog of a formal power series.
If f_.(x) is the associated factor sequence of the delta operator Q = f(D),
then

Jalx) = O

5%!’—‘

[
[ (1) et dt

0 -1
= [ erwar,

v

and more generally, applying Q successively,

__1yn-1 0
f—n(x): ( 1) f fr=lgrf 1t dt;

(n— 1! J_

thus the generating function of f_,(x) can be expressed by the Cigler transform:

0
Y folay sht = [ emsther ™MD gy,

k31 b

Similarly, if g,(x) = Tf_,(x) is the factor sequence obtained from the
associated factor sequence by applying the invertible shift-invariant operator
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T = g(D), then by a Cigler transform one can express the generating function
of g_,(x) in the form

g0 = 10 = [ gy fy e

= [ gy eroa,

whence

, 1 0 (_1)n~1 tn—l -
— (On—1 - o= A_ 7 ° -1 xf ()
goale) = 010" = [ e ) e dr

and again
0
Z g i(x) sF1 = f g(f~Y(t)) e=st+a 0 gy,

k>1

12. ExamPLES OF FACTOR SEQUENCES

2.7. The negative factorial powers

1
T DE ) ()

(*)-n

are the associated factor sequence for the operator 4 = o(e; — €). This
follows from the Recurrence Formula:

Ax¥)y = BN x) = (¥) g -

Thus we immediately have

jeol

()= %) O

k=0

as well as

Am(x)—n - (_n)m(x)—'n—m .
Corollary 2 to Theorem 17 gives

* I n+k>
(V- = % (1) AR e

n!

where L = ¢, — e. But g,(x) = ¥y_o ((LF | x> /k!) % is the conjugate sequence
for L. Thus
(L™ am Ry In) = S(n -+ k, n),
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where S(n, k) are the Stirling numbers of the second kind. Therefore, we obtain
the identity

1 - k —n—k
m:k;}(~l) S(n + k, n) x—n-F,

3.5. A similar treatment may be given to the associated factor sequence
for V = o(e — ¢_,), which is

X (=

We state as a sample:

8

{a>_, = S(n + ky, n) a—nk,
0

k:

4.6. The associated factor sequence for the Abel operator De? is given
most easily by the Transfer Formula:

A_y(x, a) = xEwmyg-—n-1
= x(x 4 an)—"1,

Thus the identity

]

()0 =y tan) =t = 5 (T ay(y - akyt (x4 afn — Ry i

is immediate.

Corollary 2 of Theorem 17 yields
A_(x, @) = (anys x—n-*,
()

6.6. 'The negative Steffensen polynomials are the associated factor sequence
for e=P/2(e? — 1), and thus by Corollary 1 to Theorem 17,

a3 = e 2e-i(x)
= xfx — n2 — l)-n—l
x o
(x—=m2)(x —n2 +1) (v =~ n2) "
7.6.  The associated factor sequence for the Laguerre operator DD —1)is

L_p(%) = &(D — Iy y-n—1

= f‘ (;n) (=) (—n — 1), x—n—k,

k=0

this by the Transfer Formula.
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In view of Theorem 18, the factor sequence L_,(x) is self-reciprocal, as
expected.

If f_u(x) is the associated factor sequence for the delta functional L, then the
conjugate factor sequence g_,(x) to f_,(x) is the associated factor sequence for I,
the reciprocal to L. By Theorem 18, we have f ,(g(x)) = g_,(f(x)) = x.

2.8. The negative exponential polynomials ¢_,(x) are the conjugate factor
sequence to (x)_,, and are therefore the associated factor polvnomials for
log(I + D). \

Corollary 2 to Theorem 17 gives

—n(x) 2 (—‘])}‘ s(n -+ k&, n) xR

where sz, k) are the Stirling numbers of the first kind.
We have by Theorem 18 the umbral substitutions,

R — i (—1)]L S(f’l ‘L k9 n)(x)——n—ls

(—I)R S(n + k’ n) d’vn-rk(x)y

Ms

k=0

i

which are equivalent to the Stirling number identities
Y S+ k) S(n - j,n+ k) =8,

k=0

and

Z Stn 4k, n)s(n+7,n+k) =8;,.
k=0

By the Recurrence Formula,
bna(®) = (I + D) a7'¢_y(x)

$n(*) = &I + D) p_, 4()
= = [ 4 D) by (x).

and so

Taking n = 1 and k& = #n gives

$(%) = [¥{I + D)]" $_4_u(x)
= e~ H(xD)" e"p_y_(x).
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3.6. 'The conjugate factor sequence to the sequence A_,(x, a) is computed
by Corollary 2 to Theorem 17:

n!

g ] | gntk ,
pn(x, @) = ) (=1 |y x—nk
B=0

where L is the reciprocal to ¢,4. However,
Lty (n 4k — 1) [—a(n + R)]*
n! U n—1 n!

and thus
popfx, a) = i (—n) [_M o

1
Nk n!

The umbral identity ¥ = u_,(A(x, a), a) gives the elegant power series
identity:
o —n) [—a(n + R))*

=% (G i

k=0

[x + a(n + k)]-**L

We turn now to some connection-constant problems.

2.9. Determine the connection constants ¢_, ; in

1 _ i Cna(—1)F
(x - D +2)(x+n) ~Z@—1)x—2)(x—Fk) )

Since (x)_, is the associated factor sequence for g(D) = eP — I and <x)_;
is the associated factor sequence for f(D) = I — e~?, we have g(f1(D)) =
D|(I — D) and so

o«

Y copixF = L_(—%).

k=1

Thus

T Lk x—Dx—2) - (x—k) "

1 - ( — (=7 — Din
(x + Dx+2) (v +n k:l( ”) :

6.7. Determine the constants c_, ; in

<]

X . Con,k
(x —n2)x —n2 + 1) (x +n2) 1;1 (x +Dx+2)(x+ k)

Since x["! is the associated factor sequence for g(D) = e P/*(e? —I) and



170 ROMAN AND ROTA

(x)_y, is the associated factor sequence for f(D) = eP — I, we have g( f (D)) =
D(I -+ DY'72 Therefore,

Z C-n,kxik = ?C(] + D)—n/z x-n—1

k=1

and so

Cone = (k—z/Zn) (=7 ~ D -

7.8. Determine the constants ¢_, , relating the Laguerre polynomials to
the exponential polynomials:

L) = f A

Since L_,(x) is the associated factor sequence for g(D) == D/(D —1I) and
¢_n(—=x) is the associated factor sequence for f(D) = log(I — D), we have
g(fY(D) =1—eP and so

Ms

C~n,kka - <‘x>~n .
P

1

Thus
€ ny = Sk, n)

and

L_,(x) = kil S(k, n) d_i(—x).

We postpone discussion of Hermite and higher-order Laguerre factor
sequences until Section 13.
We conclude with some examples of Cigler transforms.

2.10. For the factor sequence (x)_,, we obtain as a special case of the
Cigler transform Nielsen’s factorial expansion of the incomplete gamma
function:

Y (%) *1 = f " el 1+ o) dr.

k>1
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4.9. For the Abel sequence A_,(x, a) we obtain

0
Y A_i(x, a) =1 :f e—strar ) gy
—w

E>1
= [ lg)

f(2) = tet.

where

7.9. For the Laguerre sequence L_,(x) we obtain
0
Y Ly (%) s+ zf e sthat/i=1) gy,
k31 —®
2.11.  For the negative exponential polynomials:
0 t
Y y(x) k1 = '[ e—stratet-1) gy
k>l —®
4.10. For the sequence p_,(x, a), reciprocal to the Abel factor sequence:

[
Y pg(x, a) sl = f ettt gy
k>1 —®

13. HERMITE AND LAGUERRE POLYNOMIALS

Theories of special functions often present those functions that are of frequent
occurrence as special cases of some general concept, and the present development
is no exception. In actual fact, however, those special sequences of polynomials
that have actually occurred are best defined by their own structural conditions.
Such axiomatic descriptions remain largely undiscovered, partially because
of a deficiency of notational suppleness in the theory of special functions which
it is the avowed purpose of the present work to remedy.

Hermite Polynomials

As an instance of such a structural characterization, we consider the following
problem: Find all Appell sequences s,(x) with the property that

$i(4) sa®)> = —(1/o){s;4(4) | $n4a(),

for some constant v.
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By the Recurrence Formula,
Spea(¥) = (¥ 4 T(TTY) su()
== (% -+ ) s,(x),

where s,(x) = T~1x". But this gives s;(4) = —(1/¢)(@, + §%*) 5;_,(A4), whence
S* is multiplication by —v4 and S = —uD, and thus 7" = e *P*/2, The
resulting polynomials are the Hermite polynomials H{(x) = e *2°/%x" of
variance v. For v = 1, we obtain the classical Hermite polynomials.

The elementary properties of the Hermite polynomials have been derived

in “Finite Operator Calculus.” We shall give a sampling of applications of the
present methods. From the operational formula

(v — 2D) p(x) = —e=5u(wD) e2up(),
one infers the recurrence
H2(x) = (v — oD) Ho(x) = (=1) ™ @Dy e B, (5)
and for 7 = 0 the Rodrigues formula
H(v)(x) ( )n @ /20(%D)n —x2/2v

Expanding () by the Leibnitz formula gives
Hyli@) = 3 (—of™ (1) 00 HO () HE, 0. (++)
k=0 y
Replacing 7 by n — 2m and setting j = n, Eq. (x*) becomes
I, N ek (M 5 H® () HY, (x
an—am(¥) = Z (—v) (n m),_, Hy"'(x) 2m{X)-
i k
We recognize an umbral composition with the Laguerre polynomials

L) — z (=1 () (= 2m),

Using the fact that the Laguerre polynomials are self-reciprocal (proved later
in this section, or see “Finite Operator Calculus™), we obtain

n

OHD) Hlan(o) = 3 (i) (01— 2o HE 00,
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Changing n to n -+ m gives

n+2m v, . nm n +m v
L) By = Y (") 0= M) HE 04,
k=0

and finally letting j = k& — m we have

n-+-m

2n-temyy(v) (v) — 3
v Hn+m(x) Hn—»m(x) - Z (] -+ m

J=m

) (n = m)yy H).

From this formula we obtain

,LG[HS,)(x)]z . vn+mH'(;i)m(x) Hi’ﬁm(x)
SR e [l B ATt | A TG PP

Now for negative variance v, we know (Finite Operator Calculus) that H{?(x)
is nonnegative, and since the above coefficients are nonnegative, we obtain

P HP )] — " H,(x) Hiy(x) = 0.
For m even, we obtain a Turén-type inequality.

» We give now a duplication formula for Hermite polynomials. That is, we
determine the connection constants ¢, ; in

HP(ax) = Y ¢, HY(x).
k=0

Since H{"(x) is the Sheffer sequence for the pair (¢“4’/2, 4) and H(ax) is
Sheffer for the pair (e***4*/2, a-14), we have by Corollary 2 to Proposition 9.5
that t,(x) = 3,_o ¢, ;4" is Sheffer for the pair (et® "~ 4*/2 g-14) and so

l‘n(’C) = ghelw—va 3 D2 m
n

—Y (w — va~2)*

% (1), x™2F,
k=0 2%

We next determine the connection constants ¢, ; connecting the Hermite
polynomials to the Bernoulli polynomials:

HP(x) = Y ¢, BP().
k=0

Since H,”(x) is Sheffer for the pair (¢4*/2, 4) and B{(x) is Sheffer for the pair

607/27/2-6
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(((e* — €)JA)*, A), the sequence f,(x) = Y5_g ¢y &% is Sheffer for the pair
(((e4 — €)]A)== e*4*2, A) and thus

D a
upra (€2 —1
R e
The constants ¢, ; are then determined by a routine Taylor’s expansion.

Laguerre Polynomials

We have seen that the basic Laguerre polynomials arise in computing the
connection constants between (x), and {(x),. We now consider the more
general problem of computing the connection constants between E-°~!(x),
and (x>, , for « a real number. More explicitly, we determine the constants
Cp.r I

(x—oc»~1)(x——a—2)"'(x—o¢—n):icn,kx(x+l)"'(x+n—l).

The sequence E—Y(x),, is Sheffer for the pair (e/>t14, ¢4 — ¢) and the sequence
{x), is Sheffer for the pair (¢, ¢ — ¢). Thus Corollary 2 to Proposition 9.5
tells us that 7,(x) = Y5_o €. 1X* is Sheffer for the pair (¢ — A)=2, Af(e — A)).
Thus

£,(x) — (I — D1 Lo(—3).

The Laguerre polynomials of order « are
L) = (I — DY Ly(x).

The ubiquitous presence of these polynomials can be traced to the fact that
they give this important set of connection constants. The reader is referred
to “Finite Operator Calculus” for the elementary properties of the Laguerre
polynomials. We cite only

L 1 3) = ¥ (P L) )

k>0
and the formula due to Kahaner, Odlyzko, and Rota:

Limearstd(y) kodd,

LENLAWA L) ) = [ asrorind(y  poven, )

where MM(x) = (I — D)~ a".

Equation (*) gives the connection constants between Laguerre polynomials
of different orders. Equation (%), for k =2, gives L{(L‘%)(x)) =
(I — DYz g = (—1)" L&a™1"(x). For o; = oy = o, we obtain L{P(L)(x)) =
a" showing that all the Laguerre polynomials are self-reciprocal.
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Various representations of the Laguerre polynomials of Rodrigues type
follow from our methods. As an example, we prove Carlitz’s beautiful:

L) = (XD — X +a+1),1

This formula is a consequence of Theorem 14. In the notation of the theorem,

we have (Q')! = —(D —I)?, whence the corresponding shift operator is S~
—X(D — Iy Similarly, P = (I — Q)**, so that P0oP~! = (a - 1)(I — D). o
Thus
L) = (—(@ + 1D — 1) = X(D — 1) L(x)
= (XD — X -+ a + 1)(I — D)L, (x)
= (XD — X + o -+ 1) LEP(x)
= =X&D—-X+4+a+ 1,1

More generally, we have proved
L(a)w(x) = (XD~ X |+« + 1>nL(a+m)(x)

e We derive the Erdelyi duplication formula for Laguerre polynomials:
Lax) = ¥ ¢, L2 ().
k=0

Since L;”(x) is Sheffer for the pair ((¢ — Ay, 4)(A — ¢)) and L®(ax)
1s Sheffer for the pair ((e —a14) 1 4/(4 — a)) the sequence t,(x) =
S0 € xX* is Sheffer for the pair (@>(a - (1 — a)A)~>-1, Aj(a - (1 — a)A)).
By the Transfer Formula,

t(x) = a(a + (1 — a) Dy+7 x»

- n a+1z & . . .
ﬁlgo(”—k)a(l a) L(”)n—l;x-

Factor Hermite Sequences

The factor Hermite sequence of variance v is the factor sequence for the pair

(e=vD*12 D). Thus

H(v)(x) — e»iD /" A
We have

20

HYx 4 3) = ¥ (7)) v HO).

k== -
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Corollary 3 to Theorem 17 gives

. <e—vA2/2nA”_1 i xn+k—l> x‘—n—k

n!

1 = 3, (1)

_ Z (—2) (e
Theorem 19 easily establishes the umbral composition
HOEY () = HE ().
The Cigler transform for H®)(x) gives

Z Hglg(x) sk—l — fo e—rt2/2—(s-.’1‘)t dt.

k>l —®
We establish the duplication formula for factor Hermite sequences

sl

H(b)(ax) . Z —nIH(u)(x)

It is not hard to see that if f ,(x) is the (f(D), g(D))-factor sequence, then
f_u(ax) is the ( f(a"'D), gla=D))-factor sequence. Thus since H)(ax) is the
factor sequence for the pair (e-*¢"P*/2, D) and H)(x) is the factor sequence
for the pair (e~vP°/2, D), the sequence 7_,(x) = Y5, ¢_nx~F is the factor
sequence for the pair (e®v—*¢0°/2 g-1D) and thus

—n(x) — g "elw—va ) D¥24—n

a-n (20 — va~?)*

2%

(—1)gp 7777,

UMS

Factor Laguerre Sequences

The factor Laguerre sequence of order « is the factor sequence for the pair
((I — DY+, D)(D — I)). Thus, by analogy with L{®(x), we have

LO(x) = (I — D L_ (%)
= (—-—1)" (I — D)a—n X"

o

=Y (5 T D

We have

oc

Lo +3) = ¥ () L) L),

k=0 -
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and applying the operator (I — D)*+1 = o(e — .4)?*! we obtain the composition
law

o

Lo +2) = X () ) LA ),

k=0

Theorem 19 implies
LOL(x) = (I — Dy
= (=" L& (a).
For a« = B, we obtain the identity
LELY () = 7",

showing that the factor Laguerre sequence L®)(x) is self-reciprocal. Explicitly
we have

= Z (273 (=1 (s L),
The Cigler transform for the sequence L%)(x) gives

oz 0
Z L(_acz(x) sk—l — f (1 . t)~o¢~l e—sf+a‘t/(t~1) dt.
=1 —w

We determine the connection constants ¢_, ; in

1 _ ¥ (=Dfcy,
(x—a)(x~a+])~-(x—oc—1+n)__762::0 x— 1)x —2) - (x — k)~

Just as before, E-*~1(x)_, is the factor sequence for the pair (e~*+DD, ¢P —1T)
and (x>, is the factor sequence for the pair (I,I — e P). Thus Corollary 1
to Theorem 19 implies that 7_,(x) = Yy 4 ¢, xx~* is the factor sequence for the
pair (I — Dy*1, D/(I — D)). Hence

r_a(%) = L& (—x)

a—n
= —H)n—tk a7k,
,él (n — k) (=)
as expected.

Finally, we derive the duplication formula for factor Laguerre sequences.
Namely, we determine the constants ¢_, ; in

Lax) = 3 con L)),
k=1
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Since L)(x) is the (I — D)™, D/(D — I))-factor sequence, Corollary 1 to
Theorem 19 implies that r_,(x) = 3_, ¢, x7% is the factor sequence for
the pair (e Ya 4 (1 — a)Dy*L, Df(a -~ (1 — a)D)). Thus

7_py(X) == a(a -+ (I —a) D" an

=3 (> )i — @ (—m)a

=1

14. AprpLicaTIONS TO COMBINATORICS

We define a store o as a set, in general infinite, together with a map d which
assigns to every element of o a positive integer, called its degree. 'The subset
of & consisting of all elements of a given degree is assumed to be finite. In
practice, the elements of o are sets endowed with some structure, and the
problem is to count o; that is, to determine the number a, of elements of ¢
of degree n. We call a,, the counting sequence of o, and we assume that a; > 0.

We define the generating functional of o as the delta functional L satisfying

(L|x™ = a,.

The counting sequence is thus the sequence of coefficients of the indicator of L.

The partitional of a store o (a translation of Foata’s ‘‘compose parti-
tionnel”) is a second store part (o) defined as follows. An element p of part (o)
is a set (not a sequence) of pairs {(B;, s,),..., (By, 5)}, where

(i) the B; are the blocks of a partition of the set {1, 2,..., n}, for some n
(hence B, is nonempty);

(ii) the s; are elements of the store o;

(iit) the degree of s5; equals the number of elements in B; .

To every such element p, called a part of part (o), we associate two integers;
the degree d(p) of p is the sum of the degrees of s; and the part number of p
is the number of blocks.

The partitional part (o) is obtained by letting n range over all positive integers.
We let b, ;, be the number of elements of part (o) of degree n and part number £,
and call it the counting sequence of the partitional. We set by = 1. Since
a, > 0, we have b, ,, > 0 for all ».

The following proposition motivates this definition.

ProrosiTioN 14.1. Let b, ; be the counting sequence of the partitional part
(o) of a store ¢ having generating functional L, for the degree n and the part number k.
Then

bu = CL* | am>[RL
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Proof. Evidently the counting sequence satisfies the identity

)= () b

t k=0
Therefore, by Proposition 4.3, there exists a delta functional M such that
B = (M* | 4R,

But it is immediate from the definition of partitional that 4, , = @, . Thus
M =L. Q.E.D.

We remark that 3_, b, ,%* is the conjugate sequence for the delta func-
tional L.

COROLLARY 1. Let ¢, = Yy bnr, be the number of elements of degree n
in part (c). Then
¢, = (e |a™>.

CoroLLARY 2 (Foata). The exponential generating function of c, is the
indicator of the exponential of the generating functional of o.

We illustrate these notions with some elementary examples.

ExampLe 1. Find the number of partitions of an #n-set.

Solution. Let o be the store having exactly one element of each degree.
Then part (o) is the set of all partitions of finite sets. An element of part (o)
of degree n and part number % is a partition of an n-set into & blocks. Now
since (L |a"> =1 for all » >0, we conclude that L = e! — e = ¢ — ¢,
the forward difference functional. Thus Proposition 14.1 implies that the
number b, ;, of partitions of an n-set into & blocks is S(, &), the Stirling numbers
of the second kind, defined by

Corollary 1 tells us that the Bell numbers B,, of partitions of an n-set satisfy
Bn = <eL ‘ xn>,

where I = e4 — e. Corollary 2 gives the exponential generating function for
the Bell numbers as exp(ef — 1).

ExampLE 2. Let S be an n-set. Then a k-partition of S with selected subsets
is a partition of S into % blocks B, , By ,..., B, together with a nonempty subset
C; of each block B;.
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ProsrLem. Count the number of partitions of an n-set with selected subsets.

Solution. Let o be the store consisting of all pairs B;, C; of nonempty
sets, such that B; D C;. Then part (o) is the set of all partitions of finite sets
with selected subsets. Since (L | 2*> = 2# — 1, we see that

L =% (28 — 1) Akl = efe” — 1),
r>1
the difference-Abel functional. Applying Proposition 14.1, we find that the
number &, ; of k-partitions of an n-set with selected subsets is the kth coefficient
of the nth conjugate Gould polynomial:

Bug =3 (%) #ise —i, &),

i=0
By Corollary 1, the number P, of partitions with selected subsets is
P, = <eL | &™),

where L = ed(e? — 1).

ExampLE 3. Find the number of rooted, labeled trees on 7 vertices, where
each vertex is of degree 1, except the root.

Solution. Let o be the store whose elements of degree # are rooted, labeled
trees on n vertices in which each vertex has degree one, except the root. Then
part (o) consists of all forests with the specified degree requirements. Since
(L |x") = n, we conclude that L. = Ae“, the Abel functional. Proposition 14.1
implies that the number of forests on # vertices with 4 components satisfying
the above degree requirements is

by = (Z) ko,

Corollary 2 implies that the exponential generating function for the number ¢,
of forests on 7 vertices with the above degree requirements is exp(te?).

ExampLE 4. Find the number of permutations of an n-set all of whose
cycles have odd cardinality.

Solution. Let ¢ be the store whose elements of degree 21 4 1 are all cyclic
permutations of the set {1,2,..,2n 4 1}, and having no elements of even
degree. Then part (o) is the set of permutations of finite sets whose cycles
have odd cardinality, the elements of degree 2z -}- 1 and part number % being
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permutations of the set {1, 2,..., 2n + 1} with & cycles, all of odd cardinality.
Thus (L | ¥2%+1 = (2x)! and <L [ x5 = 0. Hence

- (2k)___ 2k4+1 1__ 2k+1
S 2k 4 1) Aret = 3, 2k 41 A

= § log((e ++ A)/(¢ — A)) = arc tanh 4
Now let T,(x) be the conjugate polynomials for L. The recurrence
Tyia(x) = xTy(x) + n(n — 1) T, _y(x)

is established by applying L* (where I == tanh A) to both sides and using
the fact that (I* | T,(x)> = n!$,, ,, and

CLF | &To(w)> = <DALF) | To(w)y = <RL*=Ye — L2) | T(x)>.
Putting & = 1 in the above recurrence, we have

Ty (1) = T5(1) + n(n — 1) T, _4(1)
so that the required number is

To(l) = 1232+ 52 o (2 — [)2,

ExampLe 5 (Cayley). Find all rooted, labeled trees with # vertices.

Solution.  Let o be the store whose elements of degree # are all rooted labeled
trees on 7 vertices. Then part (o) is the set of forests. Letting by, 1 be the number
of elements of part (o) of degree # and part number %, we have the obvious
recursion, obtained by removing the root of a tree and counting the resulting
forest:

bn.l =n Z bn——l.k .
k

In terms of the generating functional, this becomes

LF l%" 9

L am) = nZ = (et | Dx")

= (et | xm),

and thus L = 4e*. We seek the conjugate sequence for L. But 4 = LeL —
f(L)and soL = f-Y(4) and L = f(A4) — AeA. Thus we see that I, is the Abel
functional and

Y b ¥ = x(x - n)nL,
%
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Therefore,

b= (5 1)

and the numbers of rooted labeled trees on # vertices is 7”1,
Recall that a binary tree is a tree in which each vertex has degree one or
three, except the root, which has degree 2.

ExampLE 6. Find all rooted, labeled binary trees with n vertices.

Solution. Let o be the store whose elements of degree n are binary trees
with 7 vertices. Then part (o) is the set of forests of such trees. We have as in

Example 3:
(LY = n(L2 | anty 4 (A | 4%,

soL = A(L* + 2¢)[2 and [, — 24/(A% + 2¢). By the Transfer Formula,
Z by ox* == a27(D2 4 2)n a1
.

S (™) 2K — 1) 472,
2\,

k=0

Thus,
(0, n -+ k odd.

bn,k - n — (k—n)/2
((n — k)’/z) (n 1)"—7~ 2 ) n - k even.

A linearly ordered tree is one in which all but two vertices are of degree 2.

Exampre 7. Find all rooted, labeled forests on n vertices in which each
tree is linearly ordered.

Solution. Let o be the store in which the elements of degree # are rooted,
labeled linearly ordered trees on # vertices. As in Example 3, we see by removing

the root that
L amy = m(L | a1ty + (A |,

Thus L — LA + A, and L = AJ(A -+ €). By the Transfer Formula,
Y by = x(D + I)* x"?
3

= éo (Z) (m— Dy &%
L),

where L,(x) are the Laguerre polynomials.
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