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1. INTRODUCTION

This is the first in a series of papers intended to develop the modern
theory of the umbral calculus. No previous knowledge of the subject is
required for this series.

Let us give a brief explanation of the term modern umbral calculus. A
large part of applied analysis is concerned with the study of certain
sequences of special polynomials. Some of the most important of these
sequences are associated with the names of Jacobi, Gegenbauer, Legendre,
Chebyshev, Bessel, Laguerre, Hermite and Bernoulli. All of these sequences,
and many more, fall into a special class. Boas and Buck, in their work on
polynomial expansions of analytic functions, used the term sequences of
generalized Appell type for members of this class. A sequence p,(x) of
polynomials is of generalized Appell type if it has a generating function of
the form

A YEh)= N peo) ¢

k=0

where

o0
A([)Z S aktk, aoios
Pi)= \ Wk W, #0 for all k,
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and

he)= N htt, h,#0.

8

The modern umbral calculus grew out of an attempt to develop a unified
theory for this class of polynomial sequences. In an earlier paper this author
and G.-C. Rota developed the theory to deal effectively with an important
subclass known as the sequences of Sheffer A-type zero, whose generating
functions are of the form

A@)eto = \° ———p;f'x) . (1.1)
k=0 :

This subclass includes the important sequences of Hermite, Laguerre and
Bernoulli. We remark that the sequence p,(x) is normalized by the presence
of k! on the right side of (1.1). All attempts at that time to extend the theory
to the entire class of generalized Appell sequences failed. It is the purpose of
this paper to make that extension.

Let us give a breif description of the contents of this paper. Section 2
contains a review of needed facts about formal power series. Section 3
discusses the dual vector space P* of all linear functionals on the algebra P
of polynomials. For it is in the umbral calculus that one studies the algebra
P via its dual space P*. In this section the structure of an algebra is put on
the vector space P*. Then since we may multiply linear functionals, the
notion of a geometric sequence ML* for k=0, 1,2,.. and M and L in P*
makes sense. Section 4 defines a certain algebra of linear operators on P
which is isomorphic to the algebra P*, Thus technically we introduce no new
mathematical concepts; however, the notational convenience of the linear
operator proves indispensible to the theory. In Section 5 we define the main
object of study—the Sheffer sequence. Briefly, a sequence s,(x) of
polynomials is the Sheffer sequence for a pair of linear functionals (M, L) if
it is orthogonal to the geometric sequence ML¥, that is, if

<MLk 'S"(X)> = cnan.k

for all n, k>0 where ¢, is a fixed sequence of non-zero constants and the
notation (N | p(x)) is used for the action of N in P* on p(x) in P. Of course
J, .« is the Kronecker delta function, J,, =0 if n#k and §, , = 1. In this
same section we give several characterizations of Sheffer sequences,
including the generating function

A(t) e, (h(t)) = i @ %, (1.2)
k

k=0
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where A(¢) and A(¢) are as before and

® xk
()= > — ¢
k=0 Ck

is a generalization of the exponential series (¢,(f) = e* if ¢, = n!). Thus we
see that if ¥, = 1/c,, then the sequence s,(x)/c, is of generalized Appell type
as defined by Boas and Buck. Also included in Section 5 is an algebraic
characterization of Sheffer sequences which may be thought of as a
generalization of the binomial formula. In Section 6 we derive recurrence
formulas for Sheffer sequences and in Section 7 we give a powerful formula
for the direct computation of Sheffer sequences. Section 8 is devoted in part
to the connection-constants problem of determining the constants a,, in

3

8

S"(X)= an.kpk(x)’

|

k

0

where s,(x) and p,(x) are given Sheffer sequences. The remainder of the
paper is devoted to examples.

The author realizes all too well the motivational difficulties encountered in
reading a large amount of theory without the benefit of example. Accor-
dingly, one may resonably omit Sections 7 and 8 at first reading.

Let us point out one of the most innovative aspects of the present theory.
Suppose s,(x) is the Sheffer sequence for the pair of linear functionals (M, L)
where M is not the multiplicative identity in the algebra P*. If we denote this
identity by ¢, then the Sheffer sequence p,(x) for the pair (e, L) bears a
strong association to s,(x). Many of the properties of s,(x) are possessed by
Pn(x) and yet in some sense p,(x) is a simpler sequence. Now the point is
that almost all of the well-known classical sequences are of the type §,(x). In
the Hermite and Bernoulli cases the associated sequence p,(x) is the simple
sequence x". In the Laguerre case L{*(x) of order a, the simpler associated
sequence is the Laguerre sequence L "(x). But up to now there had been no
clue to the existence of such sequences p,(x) associated to, for example, the
Jacobi, Gegenbauer or Chebyshev sequences. A major portion of the
examples is devoted to the study of the properties of these new sequences.

It is painfully evident from even a superficial screening of the literature
that one man’s Hermite polynomial, say, is not another man’s Hermite
polynomial. The difference is mainly due to normalization factors. We are no
exception in this regard. For the Gegenbauer polynomials G,(x) Rainville
sets

(I1—=2xt+3)"*= N G, (x)*

-
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In Section 9 we shall study the Sheffer sequence s,(x) characterized by

€0

(1=2xt+) =\ (_: ) s (x) .
0

k=

Thus ( ;) s,(x) is the Gegenbauer sequence. In the hope of minimizing the
confusion we shall reserve the name Gegenbauer for the sequence G ,(x).
referring to Section9 as the Gegenbauer case. For the Chebyshev
polynomials of the first kind we have

| 78

(I—=x)(1—2xt+£)""=142 N T(x)e~

0

x
I

In Section 9 we study the Sheffer sequence characterized by
(=xHU=2xt+) "= N (=D sx) "
k=0

A similar normalization factor is required for the Chebyshev polynomials of
the second kind. Finally, for the Jacobi polynomials P,(x) Rainville gives the
generating function

ltat+h 2+a+8,
272 T ux—1)
(1=

(1—6)7'7278 F,
1+ a;
_ G (d+atp®

- = (1 + a)(k) Pk(x) tk'

In Section 10 we study the Sheffer sequence J,(x) satisfying
l+a+f 2+a+f

2 ’ 2 T 2xt
(1-1)?

(1—1)~'"e 8 F,
1 +a;

_ & (L+a+p/2)R (@ +atpy/2)®

= G+ Kt

From this we may easily obtain J,(x) in terms of the classical Jacobi
polynomials (see Section 10).

We have decided to postpone any discussion of applications of the umbral
calculus to future works. The calculus may be applied successfully to the
study of orthogonality, inverse relations, formal power series, solutions to
recurrence relations and counting techniques to mention only a few.
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However, these applications can be broadened and await further
generalizations of the theory to appear as sequels to this paper. We briefly
discuss two such generalizations in the last section.

2. ForRMAL POWER SERIES

In this section we give a few basic facts about formal power series. Let #
be the algebra of all formal power series in the variable ¢ over the field K (of
characteristic zero). Addition and multiplication in # is purely formal and
# is well known to be an integral domain. If

S(@O)= }i a,t*, (2.1)

k=0
then the degree of f(t) is the smallest k£ such that a, # 0. It is easy to see
that deg f(¢) g(t) = deg f(¢) + deg g(¢).
The series f(¢) has a multiplicative inverse in .%, denoted by f~'(¢) or
1/f(¢), if and only if deg f(¢) = 0. We call such a series invertible.
Suppose g,(¢) is a sequence in .# for which deg g,(1) > k. Then if q, is a
sequence of constants, the sum

| 18

a gx(t)
£

0

is a well-defined series in #, found by simply collecting coefficients of like
powers of . In particular, we may take g,(t) = g(t)* where deg g(s) > 1.
If f(¢) is given by (2.1), we may form the composition

Fe0)= N a,g0)

k=0
which is a well-defined element of # provided deg g(¢) > 1. It is clear that
deg f(g(¢)) = deg f(r) - deg g(¢). -

The series f(¢) has a compositional inverse, denoted by f(¢) and satisfying
FUf@)=f(f()) =t if and only if deg f(f)=1. We call any series f(t)
with deg f(¢) = 1 a delta series.

A sequence g,(t) for which deg g,(¢) =k forms a pseudobasis for #. In
other words, for each series f(¢) there is a unique sequence of constants a,
for which

f@O=Y a8
k=0

In particular, the powers of a delta series form a pseudobasis for #.
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3. LINEAR FUNCTIONALS

Let P be the algebra of polynomials in a single variable over K and let P*
be the dual vector space of all linear functionals on P. We use the notation
(L | p(x)) for the action of L in P* on p(x) in P. Any linear functional L in
P* is uniquely defined by specifying the values (L | x") for n > 0.

Let ¢, be a fixed sequence of non-zero constants. We use this sequence to
define, for each f(f) in &, a linear functional in P* as follows. If f(f) =
220 a,t", then the linear functional f(¢) satisfies

SO |x")=c,a, G.1)

for all n > 0. Notice that we have used the same notation f(¢) for the power
series and the linear functional. This should cause no confusion since if f(¢)
and g(¢) are in &, then f(¢) = g(¢) if and only if (f(¢) | x") = {g(t)| x") for
all n> 0. In other words, f(t) and g(¢) are equal as formal series if and only
if they are equal as linear functionals.

The action defined in (3.1) depends on the particular choice of the
sequence ¢,, although the notation does not reflect this. We will generally
think of ¢, as fixed and no confusion should arise.

As a consequence of (3.1) we have

(| x"y=c,0,4

x">_

and

|
[ 8

a,{t | x");

o]
N k
<.\_ at
k=0

x~
Il
<

and so for any p(x) in P

[¢ 0]
<Vat"
k=0

Now any linear functional L in P* can be represented as a series in # . In
fact, if

p(x)> i a(t*| p(o)).

=

fi)= 2 LD (32)
then o k
Golxn = & LD
= (L|x")

and so as linear functionals f; (¢) = L.
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It is easily verified that the map L — f;(¢) is a vector space isomorphism
from P* onto.#. We shall obscure this map by identifying P* as the vector
space .# of all formal power series in¢. Thus from now on we shall write
our linear functionals in the form of power series in t.

The isomorphism L — f;(f) has induced a natural product on linear
functionals—namely, that of formal power series. In symbols f; (1) =

Jo() Suu0)-

Let us give some simple consequences of these results.
ProposITION 3.1. If deg f(t) > deg p(x), then

()] p(x))=0.
PropOSITION 3.2. If f(¢) is in #, then

SO

Ck

rO=Y (3.3)

Proof. Applying the right side to x" gives
w0 k 0 k
<v <f(t)1x>tk xn>=2 <f(t)lx><tk|xn>

k=0 Ck k=0 Ck

={@O]x").

Thus the two sides of (3.3) are equal as linear functionals, and so also as
formal power series.
In view of (3.3) we have for any f(z), g(t) in #,

n

SOOI = X j’_k SO |5t x"5).

COROLLARY 1. If deg p,(x)=n and {f(t)| p,(x))=0 for all n>0,
then f(t)=0.

ProposiTiON 3.3, If p(x) is in P, then

p(x)= Y\ <—t}(l—‘l—)@x". (3.4)
k>0 i

Proof. Applying ¢" to both sides of (3.4) shows that corresponding coef-
ficients of like powers of x are equal. This proves the result.

COROLLARY 2. If deg f,(t) =k and {f,(t)| p(x)) =0 for all k>0, then
px)=0.
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Progf. This follows from the fact that f,(r) forms a pseudobasis for .#
and so (¢'| p(x))=0 for all j > 0.
ProposITION 3.4. If f(t) is a delta series and
oc
gn=>Y af@

k=0

then
(gr)|x") = go a (SO | x).

Proof. We have

(g(t)|x") = <_ a, (1) xn>
=< > asf x">
= ¥ a(@ =
= ¥ a0

One of the most important linear functionals on P is the evaluation
Junctional denoted, for y in K, by ¢,(f) and defined by
&,(0) | p(x)) = p(y).

In view of (3.3) we have
k

jee)

-y
g()= N —
' k=0 Ck

t.

It is interesting to note the form of &,(z) for various choices of the sequence
¢,. For example, if ¢, = n!, then

e(t)=e",

and if ¢, = 1/(%), then
g, ()= (1 +yn)*.
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It will be convenient to introduce a linear operator ¢, on . by setting

and extending by infinite linearity. Then we have for all n >0 and k > 0,
<tk |x . xn>= (t"]x"“)
= cn +1 511 + 1,k

Ck
= cnén,k—l

Cr—1
x">

Cr
(e
Ch—1

= (0,t* | x™).

This proves the following proposition.

PROPOSITION 3.5. If f(¢) is in #, then

@S| px)) = {(f() | xp(x))
Jor all p(x) in P.

For practice, we compute

@ yk
die()=0, N —1
k=0 Ck

= ye,(1). (3.5)

As a final remark, when we are thinking of a delta (or invertible) series

S(t) as a linear functional we shall refer to it as a delta (or invertible)
Sunctional.
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4. LINEAR OPERATORS

If £(¢) in # has the form f(¢) = Y 3>, a,t*, then we shall define the linear
operator f(t) on F by

Cn

fOx"= i ax" k. 4.1)

=0 Cn—k

x~

Again we have used the same notation f(¢) for a formal power series and a
linear operator. No problems will arise (except perhaps for the temporary
confusion of the reader) since f(¢) and g(¢) are equal as formal power series
if and only if they are equal as linear operators. [To see the “if” part take
successively n =0, 1, 2,... in (4.1)].

Notice that we are using juxtaposition to denote the action of an operator
on a polynomial. A little practice will remove the discomfort involved in
thinking of an element f(¢) in # as either a formal power series, a linear
functional or a linear operator, and the notational difference between

O px))

and

S (@) p(x)

will make the particular type of action of f(¢) on p(x) clear.

The action f(¢) p(x) depends on the sequence c,. However, we shall think
of this sequence as being fixed and so no confusion should arise.

It follows from (4.1) that

4 _
[kx"z n x" k, n}k
cn—k
=0, n<k
and so
Koy wn _ ki Cn n—k—j
E)x"=""x"= x
Cn—k—j
c c,_; e
— n n—Jj xn k—j
anj Cn—kfj
C .
— n thn—j
Cn_j

=t*(t/x"™).
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Therefore, if f(¢), g(¢t) are in # we have

£ () g()] p(x) =S O] &() p(x)] (4.2)

and we may write f(¢) g(t) p(x) without ambiguity.
Notice also that

(@) &(®) p(x) = g(t) f(1) p(x).

Actually, (4.2) shows that the product in # is composition of operators.
When we are thinking of a delta (or invertible) series f(¢) as an operator
we may refer to it as a delta (or invertible) operator.
A key relationship between the linear functional f(¢) and the linear
operator f(¢) is given in the next theorem.

THEOREM 4.1. If f(t), g(t) are in 7, then

(&) S ()| p(x)) = (&) | £ (1) p(x))
Jfor all p(x) in P.

Proof. By linearity we need only show this for g(¢) =t*, f(t)=¢ and
p(x)=x". But then we have

e x"y = ] X"

:cnén,kJrj
cn
:_Cn—jén‘j,k
c"_j
¢ .
— <[k n xn j>
Cp_j

= {5 Px™).
For many choices of the sequence c,, the operator ¢ may be expressed

in terms of some more familiar operators. To fix the notation we use
(X)y=x(x—1)- - (x—n+1), xP=x(x+1)-- (x+n—1)

Dx" =nx""1,
1
D x" = xmHL
n+1
x Ix"=x""1, x'1=0.

Then

(1) whenc,=n!, t=D;
(2) whenc,=1, r=x7"
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(3) whenc,=@n)""", t=(Dx)"D;

(4) whenc¢,=1/(-4),, t=—@A+xD) 'x7

(5) whenc,=1/n, t=x"'D 'x71;

(6) whenc,=1/(7'), t=—(A+xD) 'D;

(7) when ¢, =21 +a)"/(1 + a + B)*",
t=4(14+a+pf+2xD)"'Q+a+p+2xD) 'x '(a+xD);

(8) whenc,=(1—-g)- (1-¢")/(1—g)",
1p(x) = (p(gx) — p(x))/(gx — x).

As we shall see, from the point of view of the present theory the operator ¢
is the natural operator for studying various polynomial sequences. Case 1 is
related to sequences of Sheffer A-type zero, such as the Hermite and
Laguerre polynomials. This case has been studied by the present author and
G.-C. Rota. Case 6 concerns itself with such polynomials as those of Gegen-
bauer and Chebyshev. Case 7 relates to the Jacobi polynomials and Case 8 is
the so called g-case.

Let us make some remarks concerning the series ¢,(f). This series acts as
the same linear functional, namely, evaluation at y, regardless of the
particular sequence c,. However, this is not the case for the operator &,(t).
We have

e, () x" = {L _Sn yrxnk,
Y 1:0 CyChni

Now if for example ¢, = n!, we obtain
e x" = (x + ¥)",

and if ¢, = 1, we obtain

xn+l_ n+1
£,(1) x" = 4
X—y

It is not hard to see that not all linear operators on P are of the form f(r)
in.#. We have the following characterization of such operators.

PROPOSITION 4.1. Let U be a linear operator on P. There exists a series
S(t) in . F such that Up(x)= f(t) p(x) for all p(x) in P if and only if U
commutes with the operator t, that is, Utp(x) = tUp(x) for all p(x) in P.

Proof. The necessity is clear. For the converse, suppose U commutes
with . We define the series f(¢) by

£ = {.2 (e°| Ux¥) .

k=0 Cx
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Then

n 0 k
v ¢ Ux >thn

k=0 Ck

fOx"

n
. c
= N (| Ux) X

k=0 CkCn—-k
<t0 | Utn—kxn> xnfk

The last equality follows from the fact (easily proved by induction) that
deg Ux" < n and from Eq. (3.4).

COROLLARY 1. A linear operator on P has the form f(t) in # if and
only if it commutes with any delta operator.

Proof. This follows from the fact that the sequence of powers of a delta
operator form a pseudobasis for #. We may then apply Proposition 4.1.

COROLLARY 2. A linear operator on P has the form f(t) in F* if and

only if it commutes with any evaluation operator &€(t).

Proof. This follows from Corollary 1 since €,(t) — ¢, 't° is a delta series.

5. POLYNOMIAL SEQUENCES
By a sequence p,(x) in P we shall always imply that deg p,(x)=n.

THEOREM 5.1. Let f(¢) be a delta series and let g(t) be an invertible
series. Then the identity

(8(0) S () |54(x)) =y0p (5.1)
Sor all n, k >0 determines a unique sequence s,(x) in P.

Proof. The uniqueness follows from Corollary 1 of Proposition 3.3. For
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the ex1stence, suppose s,(x)=Y"7_,a, ;x’ where a,,#0, and g(t) £ ()" =
2i2y by it where b, , # 0. Then (5.1) becomes

n

N a,,'jx">

j=0

@© .
Culnx= <2 by it

e0) n
=3 > by, Kt | x)

i=k j=0
n
=k
By taking k = n one obtains
1
an,n = b

By taking successively k=n — 1,n — 2,..., 0 one obtains a triangular system
of equations which can be solved fora, ,.

We will say that the sequence s,(x) is the Sheffer sequence for the pair
(g(0), f£(t)), or s,(x) is Sheffer for (g(t), f(z)). Notice that g(z) must be
invertible and f(¢) must be a delta series. The case g(¢) = ¢° calls for special
attention. The Sheffer sequence for (¢£°, f(¢)) will be called the associated
sequence for f(t), and we say s,(x) is associated to f(t) or f(t) is associated
to s,(x).

THEOREM 5.2 (The Expansion Theorem). Let s,(x) be Sheffer for
(g(2), f(t)). Then for any h(t) in #

<h(t) | $k(x))

Ck

h(t) = OMGN
Proof. We simply apply the left side to s,(x) to obtain {h(¢)|s,(x)). The
fact that deg s,(x) = n completes the proof.

COROLLARY 1. If p,(x) is the associated sequence for f(t), then for any
h(t) in F

UL

h(t) =

The next results show how to expand an arbitrary polynomial as a linear

combination of polynomials from a Sheffer sequence. They follow from
Theorem 5.2 by taking A(t) = ¢,(¢).
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COROLLARY 2. Let s,(x) be Sheffer for (g(t), f(t)). Then for any p(x)
in P
¥ (g() S| p(x)) 5.0)

Ci

plx)=

k>0
COROLLARY 3. Let p,(x) be associated to f(t). Then for any p(x) in P

< O ey (%)

k>0 k

plx)=

It is our intention now to characterize Sheffer sequences in several ways.
We begin with the generating function.

THEOREM 5.3 (Generating Function). The sequence s,(x) is Sheffer for

(&(1). S () if and only if

sk(.V)
T U= S 2 53)

forally in K.
Progf. 1If s,(x) is Sheffer for (g(t), f(¢)), then by the Expansion Theorem

k(J’)

0= X =2 g0 0

and so

k(J’)
0= ¥ 22 e

and

. OO sk(y) k
DR

(f

For the converse, suppose (5.3) holds. Then if r,(x) is the Sheffer sequence
for (g(t), £(¢)), we have

OO ri(») k_

LS g IO
T si(¥) £
Ko Ck

and so r.(x) =s,(x) for all k> 0.
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COROLLARY 1. The sequence p,(x) is associated to f(t) if and only if

e o]
p pi(x)
e, (f)=Y 25,
k=0 Ck
Equation (5.3) defines the sequence ¢, 's,(x) as a so-called generalized
Appell sequence by Boas and Buck. Thus we see that the present theory

applies to a rather broad class of polynomial sequences.
The generating function leads us to a representation for Sheffer sequence.

THEOREM 4.5. The sequence s,(x) is Sheffer for (g(t), f(1) if and
only if

()= ¥ LBUO7 TN (54)
k=0 k

Proof. Applying the right-hand side of (5.3) to x" gives

[ 50,

k=0 Cx

¥ )=5,00)

and applying the left-hand side of (5.3) to x" gives
(FO) " e,(F @) ¥ = ¥ y— (g7 1) F Ok x")

Since these equations hold for all y in X, the result follows.
Equation (5.4) is called the conjugate representation for s (x).

THEOREM 5.5.  The sequence s,(x) is Sheffer for (g(t), f(t)) if and only
if g(t) s,(x) is the associated sequence for f(t).

Progf. This follows directly from the definitions and Theorem 4.1.

Theorem 5.5 says that each associated sequence generates a class of
Sheffer sequences, one for each invertible operator g(¢) in.#.

Next we give an operator characterization of Sheffer sequences.

THEOREM 5.6. A sequence p,(x) is the associated sequence for f(t) if
and only if

(i) (] p.x))= Co0n,0

(i) f@) pu(x)=

Cn

c pn-l(x)

n—1
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Proof. Suppose {f(t)*| p,(x))=c,8, . Then k=0 gives (i). To get (ii)
we have
(SO L@) pax)y = (S| palx))
=y 5n.k+1

Sy

= <f(t)" Pa l(x)>

C

n—1

and so (ii) follows since f(¢) is a delta series. Conversely, if (i) and (ii) hold,
then

(SO | pax)y = <z°

cn
pa 43))
cn—k
cn
= cnfkénfk.o
cn~k

=¢,0, 4
THEOREM 5.7. A sequence s,(x) is Sheffer for (g(t), f(t)) for some
invertible g(t) if and only if

Cn

S () s,(x) =

p SH(X)«. (5.5)

n—1

Proof. 1f s,(x) is Sheffer for {(g(), f(¢)), then p,(x)= g(f)s,(x) is
associated to f(¢r). Hence

g(t)s,(x)=f(1) g7'(t) pu(x)
=g~ '() S (1) pulx)

=g 7'() P i%)

n—1

Cu

= Sp_1X)
)

Conversely, if (5.5) holds, then we define a linear operator U on P by

Usy(x) = pa(x),
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where p,(x) is associated to f'(¢). Then

Cn

Uf(t)sn(x): US,,,I(X)

c

n—1

Cy

Cn~1
= /(1) p,(x)
= /(1) Us,(x)

and so Uf(t)= f(t)U. By Corollary 1 of Proposition 4.1 we deduce the
existence of an invertible g(¢) in .# for which g(¢) s,(x) = p,(x). The result
follows from Theorem 5.5.

We now turn to a characterization of-Sheffer sequences which generalizes

the binomial formula.

pn—l(x)

THEOREM 5.8 (The Sheffer Identity). A4 sequence s,(x) is Sheffer for the
pair (g(t), f(1)) for some g(¢t) if and only if

n

80 5,()= X —— py(y)s, (x) (5:6)
k=0 “k*n—k

Jor all y in K where p,(x) is associated to f(¢).

Proof.  Suppose s,(x) is Sheffer for (g(¢), f()). Then by the Expansion
Theorem

f0= N 2 py
k=0 k

Applying both sides to s,(x) and using Theorem 5.7 gives Eq. (5.6). For the
converse, let U be the linear operator on P defined by Us,(x) = p,(x). Then
it is sufficient to show that U = h(¢) for some A(f) in.#. Now

&,(1) Us,(x) = £,(t) p,(x)

=N S D) Pa)

p—

k=0 CxCnk

" c
= U N . pk(y)snvk(x)

pa—

k=0 CuCn_k

= Ue,(1) 5,,(x)

and so there exists an invertible A(¢) for which U = A(t). This completes the
proof.
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One may observe that for ¢, = n! the Sheffer identity is

N P M EXCPE)

k=0
When s,(x) = p,{(x) =x" we get the binomial formula.

An important property of Sheffer sequences is their performance with
respect to multiplication in # .

THEOREM 5.9. Let s,(x) be Sheffer for the pair (g(t), f(t)) and let p,(x)
be associated to f(t). Then for all h(t) and I(t) in F we have

n

RO IO s, = 1 —

k=0 “kYn—k

Cn

R | s XU | Pu—i(X))

Proof. An instructive proof of this result is based on the algebra P[x, y]
of polynomials in two variables x and y. For A(f) in # by h,(t) we mean the
linear operator on P|x, y| defined by

R (6) X4y = Ch() | x4 >
and by 4,() we mean

hy(8) x*y = x*(h(t) | 7).
Then the identity

n

OO ¥ = X 2 () |0 | ¥

—0 CuCrn-k

can be written as

@) )| x"y=h () L) N I gk
k=0 CxCn—k

= h(0) L,(1) £,(t) x".

By linearity we may replace x”" by s,(x) giving
Ch(E) (1) | $4(x)) = ho(£) 1,(2) £,(0) 5,(x)

n Cn
=h () L0) Y $.( V) Puoi(x)
k=0 CkCn_k

n

n

= N S 0] (@A) | i)

k=0 CxCn_k

The result follows by interchanging A(¢) and [(¢).
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6. RECURRENCE FORMULAS
# defined by

oG
)= >
PROPOSITION 6.1

SOl

If i is a linear operator on P, then the adjoint u* is the linear operator on
Ck
If deg fi(t) > jfor j >0 and

then

f(t)— 3 a,f,(t)

Proof. We have

0= a0 (61)
oo deguxk £
W 0= 3N a0 | =
<,

~
(=3
x

=0

Cy
S0,

C

[
[48

j

I
=]

;40

ProposITION 6.2. If u is a linear operator on P, then

W) | p(x)) = (f(O) |upx))
Jor all f(t)in # and p(x) in P

p(x)=x". In this case

(,u*t’|x Y= OO <’J|ﬂx )

Proof. By Proposition 6.1 we need only show this for f(r)=¢ and
(e x")

k=0 Ck
=t [ ux").
If p,(x) is associated to f(¢), then the umbral shift 8, associated to f(t)
|or p,(x)] is the linear operator on P is defined by

n+ 1),
6, p,x) =L Den
¢

for all n > 0.

n+1

pn+1(x)



78 STEVEN ROMAN
Recall that a derivation ¢ on an algebra A is a linear operator on A
satisfying
o(ab) = (0a)b + a ob -

for all a, b in A.
We may characterize umbral shifts by their adjoints.

THEOREM 6.1. An operator @ on P is the umbral shift for f(t) if and
only if its adjoint 0* is a derivation on F satisfying Eq. (6.1) and

O¥f (1) = kf (1)~
forall k>0,

Proof. Suppose 6, is the umbral shift for f(¢), with associated sequence
pn(x). Then

GFFWF | o)) = (SO | B,0))
=D e )

n+1
- kcn5”+ 1,k
= k()| palx))
and so 6} f(¢)* = kf(t)*~'. From Proposition 6.1 we conclude that 6} is a

derlvatlon on.#. For the converse, let w be a derivation on .# for Wthh
af ()F = kf (1)~ ". Then if p,(x) is associated to f(¢), we have

(wf (O | pa(x)) = Ckf ()| Pulx))

= kcn 5n.k—1

= (S| 6, pu(x))

= OFf ()] Pu(x))-
Thus since w satisfies (6.1), we conclude w = 6.

Notice that 8¢* = k¥~ and so 8} is the derivative with respect to 7. That
is,
05 g(t)=g'0),

and

(8] 6,x") = (&' (W) [ x").
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We also observe that

and so
8,t=xD,

where D is the derivative with respect to x on P.
Next we derive the chain rule for derivations.

ProposiTiON 6.3.  If f(t) and g(t) are delta series, then
0F = (07 8(0)) 67
Proof. Since 6 is a derivation,
6F g(t)" = kg(t)~" 67 g(1)
= (6Fg() 6 (1)
and Proposition 6.1 completes the proof.

Now we can relate two umbral shifts.

THEOREM 6.2. If 0, and 0, are umbral shifts, then

Op =0, 0 (055 ())~".
Proof. For any p(x) in P,
(t“1 6, p(x)) = (71" | p(x))
={(@Ff(O) 71 OF) p(x))
=0 | (0Ff ()" P(x))
= (10, 0 (GFS(1) ™" p(x))

from which the result follows.
From this theorem we obtain our first recurrence formula.

THEOREM 6.3. If p,(x) is associated to f(t), then

Pria(x )‘(—ﬂ—;é— 0./ (1) " palx), (62)
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where f’(t) is the ordinary derivative of f(t) with respect to t and 6;:x" -
((l’l + l)cn/cn+l)xn+l'

Proof. The result follows from Theorem 6.2 by taking g(f)=¢ and

applying to p,(x).
We wish to derive a recurrence formula for Sheffer sequences. To this end
we derive a formula for the adjoint 87 of an umbral shift.

PROPOSITION 6.4. Let 6§, be the umbral shift for f(t). Then

OFh(t) = h(t) 6,— 6,h(t)
Jor all h(t) in #.
Proof. For any g(¢) in # and p(x) in P we have
(8| 67 (h()) p(x)) = <GF (h(1)) g(1) | P(x))
= (6} (h(1) &(1)) — h(1) 67 (8(0) | p(x))
= (80| (r(t) ;= 6,2 (1)) p(x)).

PROPOSITION 6.5. Let s,(x) be Sheffer for (g(t), f(t)). Then if 0, is the
umbral shift for f(t),

Spi) = G e (800818710 +6)5,)

Proof. Let p,(x) be the associated sequence for f(¢). Then

sn+l(x): gAl(t) pn+1(x)

=i he s 088w

= e 808805,

g0 e)=(g7'(00,~06,g7' (1)) g(1) + 6,
=g 0 (g7 (1)) + 6.

But

This completes the proof.
Now we have our recurrence formula.

THEOREM 6.4. Let s,(x) be the Sheffer sequence for (g(t), f(t)). Then

5,,(x). (6.3)

sn+ l(x) =

cn+l _gl(t)
n+ e, (9' ) )f’(t)
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Proof. This follows from Proposition 6.5 by noticing that
0Fg='(1)=(071)0Fg'(1)
=) (—g7) &'(®)
and
0,=06,0;f()"
=6,(/'(0)~".
THEOREM 6.5. Let s,(x) be Sheffer for (g(¢), f(¢)). If
PR SORWAU
r= (050 )@

g0 SO
‘("D 2 )tf’(t)’

then
Ts,(x) = ns,(x).

In other words, s,(x) is an eigenfunction for T with eigenvalue n.

Proof. This follows from Theorem 6.4 by noticing that

Tt S0 =L@ 8y, ()

The two forms of T are equivalent since 6,¢ = xD.

81

(6.4)

We remark that since s,(x) forms a basis for P, any polynomial solution

to Tp(x)=np(x) is a constant multiple of s,(x).
Next we require two lemmas.

LEMMA 1. Let h(¢t) be invertible, with leading coefficient equal to 1. Then

the equation

_&g0
"=

has a unique (up to multiplicative constant) solution given by

g(t)=exp (J h(?) dt).

LEMMA 2. Let [(t) be a delta series, with leading coefficient equal to 1.

Then the equation
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0}
S ()

has a unique (up to multiplicative constant) solution given by
ey =1
S{t)=texp (J L)/)t—dt).

THEOREM 6.6. Let T be a linear operator of the form

i)

T = (6, h() 1(t)

G

= (xD — th(t)) %

where h(t) is invertible and I(t) is a delta series both having leading coef-
Jicient equal to 1. Then a solution to the equation

Ts,(x)=ns,(x)

is given by nth polynomial in the Sheffer sequence for the pair
/"' —1
(exp ( h(t) dt ), texp (Jﬂ)/—)t——dt) )

Proof. A solution to Ts,(x) = ns,(x) is given by the Sheffer sequence for
the pair (g(¢), f(¢)) where

&) _
PO
o
T =

The result follows from the lemmas.
We shall now derive another set of recurrence formulas.

THEOREM 6.7. Let 5,(x) be Sheffer for (g(t), f()). Suppose

=N

S0= 1?:1 ke, o

(ﬁ)_lf’(t)z < buge
t k=0 Ck

@) _ & d
dU0) =
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Then
15, ) = Nt (@~ d) s, () (6.5)
and
w5, = N b —ds, () [d=0]  (66)
Proof. To prove (6.5) we have
A GENA0Y10
.= (6, 75 0w
But
SO _ oy 7
P =0T U0)
= UFI(I) |l:f(1)
* a x
=Y
and
g0fO _ g @) 7o
00" T s
_ leF@)]
g/ ) li=r0
“ d,

;:0 ., S

The result follows by substitution and f(£)*s,(x) = (c,/Cn_i) 5,_i(x). TO
prove (6.6) we proceed in the same manner using
SO SO
=— t
A0

f(t) e
77O f'f(®)

II
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=@3§”ﬁm

t

t=f()
o0
_ k
—Z f@*
k=0

Theorem 6.7 has a sort of converse.

THEOREM 6.8. Let r,(x) be a sequence of polynomials satisfying (6.5).
Let

()= N K
k=1 ke,
and

thit)y= N e tk,

k=0 Cx

Then there is a constant a for which ar,(x) is Sheffer for the pair
(ex0 ([ w0 a0} ).

Proof. First we notice that solutions to (6.5) are unique up to
multiplicative constant. Now suppose s,(x) is the Sheffer sequence for the

pair (g(¢), f(t)), where

FO =10)
and
LG
o) - O

Then in view of Theorem 6.7 the sequence s,(x) satisfies (6.5). Hence
s,(x)=ar,(x) for some constanta. It remains only to solve the above
equations for f(¢) and g(¢) using the previous lemmas.

In order to complete the converse to Theorem 6.7 we need one more
lemma,

LEMMA 3. Let h(t) be invertible. Then there is a unique (up to
multiplicative constant) solution to the equation

)= U”) 7o
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given by
f(t)=texp (J'l—(t—)t:——ldt>

THEOREM 6.9. Let r,(x) be a sequence of polynomials satisfying (6.6).
Let

X b
I(ty= N L
k=0 Ck
and
th(ty= N ﬂzk.
k=0 Cxk

Then there is a constant o for which ar,(x) is Sheffer for the pair (g(t), f(t))
where

f(t)=texp (J -1 dt),

t
g(t) = exp ( @) dl‘(t)).

Proof. The solution to (6.6) is unique up to the multiplicative constant.
Now let s,(x) be the Sheffer sequence for (g(¢), f(¢)) where

(FOV" Fo=10
and

(/@)
g(f ()
Then by Theorem 6.7 the sequence s,(x) satisfies (6.6). Hence s,(x) = ar,(x)

for some constant a. It remains only to solve for f(¢) and g(t) using the
previous lemmas.

= th(t).

7. TRANSFER FORMULAS

In this section we develop formulas for the direct computation of
associated sequences. Using these formulas and Theorem 5.5 we can
compute Sheffer sequences.



86 STEVEN ROMAN

THEOREM 7.1 (The Transfer Formula). If p,(x) is the associated
sequence for f(t), then

)= 11(0) (f(’)) x" (1.1)

Jor all n > 0. As usual f'(¢) is the derivative of [ (¢) with respect to t.

Proof. We check the conditions of Theorem 5.6 for the sequence p,(x) in
(7.1). For condition (i) we have

‘f(,) f(t)) x>
“(EE) )
() ey

For n =10, we get

(oo Y ) o)

For n > 0, we get

x">.

=
~——

_+_
——

~
P S
I\
==
N
~—
—_——
'\
o~ |~
~
—

=
X

=
3

o

=
B

o

=
B

—_——
}\
Q .
"
e e N S —— S ——
XR
t
x|~ |~ x|~ s|— x|~
o
o
—_—— — ——
oy
|\
-
p—
S

o
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As for (ii) we have

(»m@—tﬂ)fm(””)

S iy (f(t))

pn‘l(x)'

"_

Cn—l

This completes the proof.
An alternative form of the Transfer Formula can be derived.

THEOREM 7.2 (The Transer Formula). If p,(x) is the associated
sequence for f(t), then

pa) =, (L) T (12)

ne,_, t
Sforalln>1

Progf. In view of Proposition 6.4 we have

mm.ﬁo(m)

(mjn
2 ) )2
<

f
¢
) ) L8

(20 g (1) e
(0 - (48 ama(22)

)’

nc t

t

I

n—1

We can use the Transfer Formula to relate any two associated sequences.
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COROLLARY 1. Let p,(x) be associated to f(t) and q,(x) be associated
to g(t) f(t), where g(t) is any invertible series. Then

9,(x)=06,8(t)7" 6; ' p,(x),
where 0, 'x"*' = (¢, ,/(n+ 1)c,)x" and 6;'1 =0.

The Transfer Formula readily gives Lagrange’s formula for the
compositional inverse of a delta series. To see this we take y =0 in the
generating function of a Sheffer sequence,

1 _ % o 5,(0) *,
gf(1) = o«

since £,(f (t)) = ¢y '. Now by the Transfer Formula
—k—1
a0 = (¢ [ o0 0 (52) 7 x)
—k—1
~(eoro (52) |#)

Thus the coefficient of t*/c, in g ~'(f(¢)) equals c, times the coefficient of ¢*
in g='(t) f'(&)(f(&)/r)"*~". Other versions of Lagrange’s formula are
similarly derived.

The next proposition is an application of the Transfer Formula.

PROPOSITION 7.1. Let s,(x) be Sheffer for (g(t), f(t)). Let k(t) and I(t)
be invertible. Then the sequence

ra(x) = h(£) ()" 5,(x)
is Sheffer for

([l_l(t) SOV

e 000 1),

Proof. First we have

ITHO SO rax) =L@ h() ()"~ 5,(x)

Cn

. h(O) 1) 5,_1(x)

Cn

= r X).
cn—l n—l( )
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Also,

IR{OYL0) i
OB

_OsO)
=iyl 805,00
_r'oso)

0

=[O sOr

f(t))‘""xn

t

0 1 (
-1 —n-1
(Cosoy
t
is the associated sequence for /~'(¢) f(f), and the proof is complete.

8. UMBRAL COMPOSITION AND TRANSFER OPERATORS

Let p,(x) be associated to f(¢). The transfer operator for p,(x) or f(¢f) is
the linear operator A, on P defined by

Ax" = p,(x).
We have
k=0 k

We can characterize transfer operators by their adjoints.

THEOREM 8.1. A linear operator A on P is the transfer operator for f(t)
if and only if its adjoint A* is an automorphism of # satisfying (6.1) and for
which

IXF(1) = t.

Proof. Suppose A, is the transfer operator for f(¢), with associated
sequence p,(x). By Theorem 5.9 we have

AFh(t) g} [ x") = Ch(D) 8(1) | pa(x))

= N )| PN O] Pai6)

k=0 CxCn_k

= Y GO 1G0T
=0

k¥n—k

= (AFh(0) AfF g(t) | x,)
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and so AFh(t) g(¢) = A¥h(t) A} g(r). Also, from (8.1) we see that A¥ft)y=1
For the converse, suppose w is an automorphism of .# satisfying (6.1) and
for which wf(r)=t. Then if A, is the transfer operator for f (¢), with
associated sequence p,(x) we have

AEL@F X"y = (L)) Ax")
= ("] pa(x))
=C,0pk
= ([ x")
= (wf (1) [x")

and so w = A},

The most important properties of transfer operators are contained in the
next result.

THEOREM 8.2. (a) A transfer operator maps associated sequences to
associated sequences.

(b) IfA: p,(x)— q,(x) is a linear operator where p,(x) is associated to
S(t) and q,(x) is associated to g(t), then L*g(t) = f(¢).
(¢) If p,(x) and q,(x) are associated sequences and Ap,(x) = q,(x),
then A is a transfer operator.

Proof. (a) Let A:x"— p,(x) be a transfer operator and let g,(x) be
associated to g(¢). Then '

(A%~ g(0) | Ag,(x))y = { g(t) | g,(x)
=c, 0

n“n,k

and so Ag,(x) is the associated sequence for 1* ~'g(s).

(b) We have (A*g(1)| p,(x)) = (g(t)|Ap,(x))=(g(t)|g,(x))=
Ca0n1 = (f(0)] Pu(x)) and so A*g(r) = £ (1),

(c) Suppose p,(x) is associated to f(¢), and q,(x) is associated to
g(t)._ Then by (b), A*g()=r () and A*g(f(1))*=r* Hence
(US| Ax"y = (¥ | x"y =, 0,4 and so Ax" is associated to g(f(¢)).

Suppose p,(x) and g,(x) are two sequences of polynomials with qa.{x) =
2k-0qnxx*. Then the umbral composition of q,(x) with p,(x) is the
sequence

(PN = N gy e pulx).

k=0
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Notice that if A: x" > p,(x), then
n

9,(P(x)) = A1q,(x).

THEOREM 8.3. Let p,(x) be associated to f(t) and q,(x) be associated to
g(t). Then q,(p(x)) is associated to g(f(t)).

Proof. Let A:x" - p,(x) be the transfer operator for f(¢). Then by the
proof of part (a) of Theorem 8.2, Aq,(x) is the associated sequence for
A*~'g(t). But Aq,(x) = g,(p(x)) and, by part (b) of Theorem 8.2, 1* ~'g(r) =
gA*~l () =g(f (1)).

We would like to extend this result to Sheffer sequences.

THEOREM 8.4. Let s5,(x) be Sheffer for (g(t), f£(t)) and let r (x) be
Sheffer for (h(t), I(t)). Then r,(s(x)) is Sheffer for the pair

(&) h(f D), I(£ (D).

Proof. Let As: x,— p,(x) be the transfer operator associated to f(¢) and
let u: x" - s,(x). Thus we have 4 = g~ '(£) 1,. Now

(8O RSO IS (D) | rals(x)))
= (8O RS ) ILf ()" | ur,(x))
= (8O RS ) IS WO) | g7'(1) Apra(x))
= AFRU )V IS E) [ rax)
= Ch(e) )" | (X))
=C,0, 4+

This completes the proof.
Suppose s,(x) and r,(x) are two sequences of polynomials related by

[ 1=

ra) = 1 @,k Si(x).
k=0

The connection-constants problem is to determine the constants a, ,. In case
5,(x) and r,(x) are Sheffer sequences we can give a solution to this problem.

THEOREM 8.5. Let s,(x) be Sheffer for (g(t), £(¢)) and let r,(x) be
Sheffer for (h(t), I(t)). Suppose

= N gy ) 8.2)

r—
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Then the sequence

L) =\ o wk X

k=0

is the Sheffer sequence for the pair

(h(f ®)

) o)

Proof. Equation (8.2) can be written as
ra(x) = 1,(s(x)).
If £,(x) is Sheffer for the pair (X(¢), Y(¢)), then by Theorem 8.4 we have

h(t) = g(1) X(f (1)),
I0)=Y(f()

and so
Y(t) = 1(f (1)),

@)
YO=2G0)

COROLLARY 1. [If p,(x) is associated to f(t) and q,(x) is associated to
I(t) and

qn(x) = .\; an,kpk(x)’
=0

x>

then t,(x)=3"F_,a, ,x* is associated to I(f(1)).

9. EXAMPLES: GEGENBAUER, CHEBYSHEV AND OTHERS

In this section we study the delta series

f(= yi-r-1

t

This will lead us to the Gegenbauer and Chebyshev polynomials.
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Associated Sequence

We begin by computing

SO)=——F—x 1+Vf———
%
f(t)—m,
o= —
V1= +/1-1%)
__Jo
tV/1-1%

We shall denote the associated sequence for f(¢) by p,(x). The generating
function for p,(x) is

( =2 >= %Ow 2(y) £
YA+ k=o Ck
The conjugate representation for p,(x) is

Pa(x) = = 20+ ) X" “

k=0 Ck
Now

¥ )= (-2 v GRS

Jj=0

ko —k
= (-2)* l.. (j )Cnén.li+k
i=o

(*2)"‘2f(Jj ”)c" it k=n—2

0

if k#+n-2
and so

[n/2]

D Cn 2.] 2j
palx)= 3 —( ) —2x)" Y,
=0 Cn_3j J (=2x)

Let us give some consequences of the Expansion Theorem. We have

AOK

_ v pk(x»
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But
if n+k odd

("] pu(x)) =0

and
("] Prarf¥)) = (2" (‘J.” ) Cass

and so
n+2j

e () revir)

or
i =S ()

From Rainville, [4, p. 70] one can deduce
9.1)

-~ ale+2k—1) .,
z

(1 + Vv I—Z) *= : 2n+2kky
k=0

for all a. Hence
(9.2)

(k+2— 1)y [tk

(—1)*k
Sy = ; T
Thus we have
p o (SO XY
X'= 3 e PdX),
-0 k
where by (9.2)
O x"y=0 if n—kisodd
and
o xny = D
2"1!
and so
[r/2] _1 n _2)(’1__ 1) ¢
n_ N\’ ( ) (n </ ji—1 n )
X ot 2"_]' cn—zj pn—2j(x)'

j=0
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Now we turn to some recurrence formulas. From the fact that

.f(l) p/l[x) = (C,,/C,,_ 1) p/[—l(x) we have

1=t p,(x) = (tf () + 1) pu(x)

Cn

= Py 1(X) + Pa(x) 9.3)

n—1

VI=p,x)= (1 + 1= 1) p,x) — p,x)
S (1 VT=1D) () s r(%) = Dalx)

and

Cn+l

= p () — Py0) (94)

n+1
Equating the two expressions gives the recurrence

Cn Cn

P,.(x)+

n+1 cn—l

tpnvl(x)'*'zpn(x):() (95)

Notice that (9.5) holds for any Sheffer sequence using f'(¢) as its delta series.
We may obtain another recurrence from (6.4). We observe first that

f0 _
70

np,(x)=xD\/1—1t* p,(x)

1—1¢2

and so

and using (9.3) gives

Cn

(xD —n) p,(x)+ xDt p,_,(x)=0. (9.6)

Cni

Also, Eq. (6.6) becomes

2
(n~xD) p,(x)=2xD ¥ —"—(=1)"p,_n(x).

k=1 CoxCn_2k

Of course, Egs. (9.5) and (9.6) may be used to derive other recurrences.
Now let us turn our attention to a specific form for c,, namely,
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where —A is not a non-negative integer. Let us collect some preliminary
results. We have

Co n
Chy —A—n+1
and
Ix" = k x"1
—A—n+1

One can easily verify that

t=—@A+xD)"'D. 9.7)
Also,

O, x"=—@A +n)x"+!
and so

8,=—x(A + xD).
Next we have

S (A
6= (77 )

=(1+ yH)™

The generating function now becomes

2t NP & A
(-57m) =5 () o

k=0

or

X =
A+ =2+ ) =N ( " )pk(y)t".

k=0

[Note the similarity with the Gegenbauer generating function.| The
conjugate representation yields

—A 2j—n
o looy)(r)

pax)=Y

()

(—2x)"~Y,
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Referring to (9.7) we see that (9.5) becomes
—A —A
(ot ) 2o+ () ) opi—2 (7 ) s x0) pi0)=0
which holds for any Sheffer sequence using f(r) as its delta series. Equation

(9.6) becomes (using (xD)*> = xD + x’D?)

(x’D* + (A —n+ 1)xD —An) p,(x) + xD’p, (x)=0

n
A4+n—1

Sheffer Sequences: Gegenbauer Case
Let s,(x) be Sheffer for the pair (g(¢), f(¢)) where

Ao
8= (1—+V/Ti7_)
It is easy to see that
g(f)= (1 + )
and so the generating function is

(142301 = 2pt 4+ 2) 4= (": ) si ()

k=0

Thus when A,=4, the polynomials ()s.(x) are the Gegenbauer
polynomials.
To obtain the conjugate representation we notice that

k kk k—Ag
g SO = D )

and a simple computation yields

( - —Ao+2—n
& n—U) J
(X)— S
)
n
To apply the Expansion Theorem we observe that

gO) SO =21 (=)' (1 + /1 —1P)ho*

(=2x)" Y.
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and from (9.1) we obtain

g(t) f(D)k = S (=D Ao+ h)Ag + K+ 2 —

= 2k+2/‘]

l)jfl J2ALS

Hence

—A
tn/2] (n~2k> —1D)"Ae+n—=2k)A,+n—1),_

x" = S 1 ( ) ( ’ Z"k)'( : )k lsnAZk(x)-
= %) |

n

We may use the techniques of Section 8 to relate Sheffer sequences for

different choices of A,. Suppose s,(x) is Sheffer for (g,(t), f()) and suppose
r,(x) is Sheffer for (g,(¢), /(t)) where

sl0)= (#f?)h

and
2 a
&)= (———) .
! Y
If

ra(x)= ‘T Ay i S(X)s

then by Theorem 8.5, #,(x) =Y _, a, ,x* is Sheffer for the pair

(&7 d)

which is the pair

((1+ 2o, ),
Thus

Lx) = (L 22yt b x”
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and finally

—A
[n/2] < _ ) _
)=\ n—2k (AO . A,

= ()

We now come to the recurrence formulas. First we need

) 5120

g Aot
g)  /1-r(1+/1-1)
= —4f"()
and
PAU N s
ooV

Then (6.4) gives

18,(6) = XD \/T— 125,(6) + — Ay15, _,(x).
1

C"

Since (9.3) holds for s,(x) we obtain

(n —xD)(A + xD) s,(x) — [ Ao +xD) Ds,, _,(x)=0.

A+n—

In case 4 = 4,, for the Gegenbauer polynomials this becomes

xDs,(x) + Ds,_,(x)—ns,(x)=0. (9.9)

n
A+n—1

We remark that Eqgs. (9.8) and (9.9) are independent and can be used to
derive all of the recurrences for Gegenbauer polynomials appearing in Rain-
ville |4] including the second-order differential equation.

Finally, Eq. (6.6) gives

=0

(2 emsoman-sooein S (), )t

Sheffer Sequences: Chebyshev Case
If A =1, then

¢y =(=1)"



100 STEVEN ROMAN
and

txn - _xn~1
and so

p(x) = (—=x)~" p(x).

The recurrence (9.5) becomes

2XPy(%) + Pry1(¥) + Py_y(x) =0, (9.10)
The Sheffer sequence T(x) for the pair ( &(t), £(¢)) where
1
)= ——
g() =

is related to the Chebyshev polynomials of the first kind. In fact we have

) =115

and so the generating function for Sp(x) is
@
(=1 =2pt+ )1 = N (DR T ) -,
k=0

From T,(x) = ¢ '(t) p,(x) we get T,(x)=v1=17 p,(x) and (9.3) gives
To(x)=x""pu_1(x) + p,(x) (9.11)
and (9.4) gives |
T,(x) = —x""p, (%) ~ p,(x). (9.12)
The conjugate representation for p,(x)

L2 Y .
mm=2(2”y4Wﬂ

i=0 /
then gives direct formulas for T L(x).
The Sheffer sequence U,(x) for the pair (&), (1)

g(t):2—2\/1—t _2@

/2 -

where
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is related to the Chebyshev polynomials of the second kind. We have
gf)=1+7

and so
©
(A=2p+) "= N (DU (x) -
k=0

Now

Uy(x)=g '(t) palx)

=5 (22)

- (&) SO) Paar(x)

t
= _;tpn+ 1(x)
=—3x"'p, (%)

and so we see that the Chebyshev polynomials of the second kind are
intimately related to the associated sequence p,(x).

Combining (9.11) and (9.12) with (9.13) gives equations connecting T ,(x)

and U, (x),
Tn(x) = —'2Un—2(x) - 2xUnA l(x)’
Tn(x) = 2Un(x) + 2xUn—l(x)’

and hence
Tn(x) = Un(x) - Un—Z(x)'

We conclude with the connection-constants problem
n
Un(x): L an,ka(x)'
k=0

From Theorem 8.5 we see that £,(x)=>"%_,a, ,x* is Sheffer for (1 —1¢
and so

t(x)= (111"
=N (1Y

j=0

8

I

1)
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Thus a, , ;;=(-1Y and a,,_,;,, =0 so

[n/Z
U,,(X)— ( Y T, x).
10. EXAMPLES: JACOBI AND OTHERS

In this section we study the delta series

t—\/1+2

t

ro="1

t
Cl+riItr2

Associated Sequence

First we have

f()—( )2’

1
S )= ——= 1.
( ViwsT Q)
We shall denote the associated sequence for f(¢) by p,(x). The generating

function is
( 2t )_ {«i 2(y) 3
(

1—1)? k=0 Ck

The conjugate representation for Pa(x) is.

Py = S PP

k=0 Ck
Now
k k W | on —2k k(_ 1V /p+k) n
@ =) = - (J. )21y e
= (n__ZI;( ) 2k(_1)n~kc"
and so

P = S () oy

k:
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Our first recurrence comes from the equations

V142 p,x)=(1+1+V1+20)p,(x) = (1+1)p,(x)

= (L4t VT 2050 P () = (1 + 1) po(x)
= () = (1 +0)po(x) (10.1)

and

VIi+2p,(x)=(1+1-8()p,(x)

C’l
= (1 + t)pn(x) - c tpnvl(x) (102)
n—1
From these equations we obtain
cn Cn
Pyi(x) + P, (x)—2(1 +1)p,(x)=0 (10.3)
Cnt1 Cn1

which holds for all Sheffer sequences using the delta series f(¢).
We obtain another recurrence from (6.4) by noticing that

£0
O

and so
np(x)=xD+\/1+ 2t p,(x).
Using (10.2) we obtain

Cn

XDt p,y, (%) ~ XD(1 + 1) p,(x) — np,(x) = 0. (104)
n+1
Sheffer Sequence: Jacobi Case
We shall take

B (1 +a)™
T+ a1 B2 +a+B)2)™

3 22n(1+a)(n)
S (et )
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4(a +n)

Since
c,
Cooy (@+B+2n—D)(a+p4+2n)°

one can readily check that
t=4(1+a+p+2xD)"'Q+a+p+2xD)" ' x '(a +xD). (10.5)

Also,
e v (Hatp)PQ@ratpy®
y o (1 +a)(k)
l+a+f 2+a+f
2 ’ 2 |
=,F, 3t
1 +a;
We denote by J,(x) the Sheffer sequence for the pair ( g(¢), f(¢)) where
2 l+a+8
0 (—2—)
14142t
Then since
g () =1 -0,
the generating function for J,(x) is
l+a+f 2+a+f
2 ’ 2 2pt
(1—1)"'=*"8,F, (1—1)?
1 +a;
_ 3 (U +a+B2)P(2 +a+B)2)® k
=\ 1+ a)® J.(y) ¢~

k=0
Referring to Rainville [4, p. 256 ], where the classical Jacobi polynomials are

denoted by P{**®(x), we have
1 (n)
_ et P pesix 1),

J,,(x)— (1 +a)(n)
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The conjugate representation for J,(x) is obtained from
_ t)—lfa—B~2k | xn>

(U0 TP |67 = @441
el S COE R EY
=0 J

( —a— [3 Zk)(—l)"*kf‘c,,
-

n

a+ﬂ+n+k>
2ke

and gives
“oja+f+n+k
J =N 2 (2x)
) k:o< n—k ) 2
_ V", <a+ﬂ+n+k> (a@+n),_g 2n—kyk
k=0 n—k (@ +B+2n),_

We wish to express x" as a linear combination of J,(x). From Corollary 2
to the Expansion Theorem (Theorem 5.2) we have

SERRCGICESTN

k=0 k
Now by (9.1) we have
(L++/14+20)7*=2%(1+/1+2r)"

wCu+2—1) .,
2u+j—1j! . (_I)J

[o 0]
Yw

j=0

and so
g f()f =21 /1 +20) e Bk
s (1+a+ﬁ+k)(1+2a+2ﬁ+—2k+2j),l
T e ( )J 2k+j T:
j=0 J:
and

n—k k 2 2 2 l
(a0 ety = R S Pt
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Thus
I D" A +a+ B+ k)1 +2a+ 26+ 2n),_,_, fLJ(x)
e 2" (n — k)! e
_w (ta+B+k)(1+2a+28+2n), , (@+n), ,
izo (n—=K) (@+p+2n),,

X (— l)n—k 2n+2k+ 1 Jk(x)‘

We conclude our discussion of the polynomials J,(x) with some
recurrence formulas. Equation (10.3) holds for J,(x) where ¢ is given by
(10.5). Let us derive Eq. (6.6) of Theorem 6.7. From f(¢)=2t(1 —t) * we

obtain
SO\ A 1+t
Z N7 )= —
(z ) Fo=14
oo
=142 N
k=1
and so
by=cy,
b, = 2¢,.

Also, from g(f(t)) = (1 —¢)'***# we obtain

deGFO)) e
sy~ Urerthi
—(ltath) N
k=1
and so
dy =0,

di=—(+a+p)c,.
Therefore Eq. (6.6) becomes

Cn

(n—xD)J, (x)= i

k=1 “kbn—k

QewxD + (1 +a+B)c) J,_i(x)

n

=(l+a+f+2xD) >
k=1 Cn-k

Cn

Jn-k(x)'
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11. EXAMPLES: THE ¢-CASE

In this section we shall briefly discuss the g-theory. We take

L _(=qi—g) (=g

" (1-9)"
Then
Cn _ l_qn
Cu_1 B l—q
and so
1_ n
[_x": q n—1
l—¢
X" —(gx)"
N X —gx
and so
p(x) — p(gx)
1 = " 7, 11.1
pl) == — (1L1)

The g-binomial coefficient is
(k)5
k], cch_y
(I-¢)---(1—g")

T (g (=0 —q) - (I=g" )"

Thus we have

. /n
g)x"= N ( ) yrxnk,
k=0 k q

From (3.5) and the equations

1—g*

8,tk =" k- 1,
(-9 (11.2)
o 0 =L0=L10)
we obtain
o) = S0 =50

t—qt



108 STEVEN ROMAN

or
&(@) =(1—-(1—q)yt)e,(1).

n

1 S",I(X)

Sheffer sequences for the delta series f(¢) =t satisfy
1
|4 =
)= =

and in view of (11.1) we get
Sal*) = 8,(gx) = (1 — q") xs5,,_,(x).

We define the sequence [x], , by

[x]a.o =1,

[¥]an=(x—a)(x—qa) - (x —¢""'a)

1—gqg"
t[x]a.n: 1—¢ [x]a.n—l

and write [x], , as [x],.
Then using (11.1) it is straightforward to verify that

c
Cnil [x]n,n—l

(11.3)

(11.4)

(11.5)

and so (x|, , is Sheffer for the delta series S(t) = t. Therefore (11.4) gives

[x]a,n - [qx]a,n = (1 —q")X[X]a,"‘l.

Since
€D [Xa.) = [al,.

= 571,09

the sequence (x|, , is Sheffer for the pair (g,(),¢). From Theorem 5.5 and

(11.5) we obtain
= ga(t)[x]a.n

X

e o]
a
= 2 _ktk[x]a.n
k=0 Ck

k

T
k=0

(s ) & {5las
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The generating function for [x], , is

LA 1-o* X
6a(t) GY(I) 1:0 (1 —q) (1 __qk) [yla.kt

¢ k
Letting y = 0 and noticing that [0], , = (—a)* ¢{ 2) gives

I _ & (1—9)"
() = (1—q) - (1—¢%)

q( 2 )(—at)k.

Since

¢ [X]g.m) = [0]a.n
= (——a)" q(g)

and using Theorem 4.1 we get

(A o) = G0 o)

Cn

(—a)* g("2").

Cn—k

Thus by Corollary 2 of the Expansion Theorem

n“ <tk|[x]a,n> k
[x]a.n: l —C_'k—x

x
I
<

S (1) ot

Replacing x by ¢,(¢) gives the formula

E@O=1D () —q" =Y

n _ n—k
(7 ) = a e
k=0 q
Applying this to a polynomial p(x) gives a formula which appears frequently
in the literature in the somewhat confusing form
A"p(x)=
k=0

(Zle4r*q“f%u+k>
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This same Corollary also gives

IR NEI;

X
= C [ ]a,k

[x]b,n =

>

Ii

(&), eloaidslas

k=0

This is actually the g-Vandermonde convolution formula in disguise. To see
this notice that

lax], = a*[x],

and so (11.6) gives, with x replaced by ax and b= 1,

fasly= (1) alal, vl (1.7)

k=0

We wish to make the substitutions

!
x=q',
a=q",

ax=q1+m'

Now if i < j we have
@i=@ -1 —q) @ —q")
=g - =) @ =
ey @-1--@-1

@ =1 (@-1
_gh = o
@—1" ¢_;

i i Cj
=4t )g -1y -

i

and if i > j, then [¢’], = 0. Using this in (11.7) gives

n Civm " c m ("Tk "
q(z)(q -1 I+ = 2 n qk q( 2 )(q— 1) k
Crom-n k=0 CkCn_k

C’l

o g - 1y

Cm—n+k I—k

X
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which becomes, in view of (";*) + (4) — (%) = —k(n — k),

I+m _ (l ) ( m )
-\ kim—n+k) . 118)
( n )q k:Oq kjg\n—k/, (

Next we touch briefly on the g-Bernoulli polynomials. We define the g-
integral by

and
y 1— q
xn _ - yn + l'
qJO l—gq !
The g-Bernoulli polynomials have the generating function

o (1 -9

—“t k
O e,(t) = AR TP wowr g B.(y) t-.

That is, B,(x) is Sheffer for the pair

[t

t

By Theorem 5.5 we have

t)—1
%B,&x):x”.
But
<81(t)_1 xn >= cn <8l(t)— 1 ‘ txn+1>
{ cn+l t
= (e, () — 1]x")
n+1
— c" ln+l
Cn+l

1
= fx-x"
q-o
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and so

(M= o))~ [ ot

In particular,

1
Suo= | xB,(x).
q7’0

Corollary 2 of the Expansion Theorem is the q-Euler—MacLaurin Expansion
< (1- Q)k &,(t) -
plx) = Z < px)>B (x
S T (= \ )8

_ (1-g)* '
= (1—q) - (1=¢* Bk(x)qjo tp(x).

[48

We can also connect the two sequences B,(x) and [x],,

B S COM 1B

k=0 Cr
= éo (Z )qu(l)[x]k
and
= 3 (0= ) 22
T p c
=3 (7)) (29 ) o

-y (% )qu(x)qu'x[xJ"_k-

k=0

We now turn to the g-Leibniz formula. First we need a lemma

For any series f(t) and polynomial p(x),
@Lf O p@x))=q7"@;f(@')| p(x))

LEMMA.

Progf. By linearity we need only check this for S(&)=1" and p(x) =x™

But then



THEORY OF THE UMBRAL CALCULUS. [ 113

(@ | @)™y = = g 2

k—n

C ,
— - k qj(kfn)<tk—n |xm>

k—n
= g% Mot xm)
=q7"@HgD)* | x™).
The g-Leibniz formula is

n

0= (}

) R a0 etan)
q

The proof consists of the following calculations, in which we use the g-
Vandermonde convolution (11.8) and Theorem 5.9,

@U@ g0) [ x™)
={f(O) g@)[x"*™)

=Yn‘ n+m j n+m—j
_( : )q<f(t)lx’><g(t)|x )

B
+
3

|
1

(=

B
+
3

|
[ 4]

S (1) (1) e e
SRS () oo e
-V s () g ol
= ‘_ (% \_ (7) g metro e s )
SN () S () @roree ol @)

(

(

x
I
o

I
—_——
143
13
——~ = 3
= 3
e
°
N
-
3
z
D
X
~
—
A Y
A
D
X
qu
—~

x
1l
=]
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12. FUTURE DIRECTIONS

We intend this paper to be the first in a series of papers. Let us give a
brief description of the subject of two future papers.

First is the idea of replacing the algebra of polynomials P by the field of
formal Laurent series of the form

po= N ank,

k=—oo

The entire theory goes through in this new setting. Each Sheffer sequence

n
Sn(X) = E_ an,kxk
k=0

is replaced by a sequence of formal Laurent series

n
§n(x) = : a—n,kxk’
k=—0o0

where a, , =a, , for n, k > 0. For n <0, the sequence §,(x) has been termed
a factor sequence and several examples have appeared in the classical
literature. However, for n > 0O the sequence §,(x) has never been studied.

The second direction for future work comes from the observation that the
present theory is somehow ‘“‘centralized” at 0. This is evident from the fact
that t° is essentially evaluation at 0 and {(f(¢)| p(x)) = (t°| f(t) p(x)). We
may ‘“‘decentralize” the umbral calculus as follows. Let a,, a,,.. be a
sequence of independent transcendentals. Then the role of the sequence ¢* is
taken by the sequence ¢,,(f) t*, where &, (¢) is evaluation at a,. A large part
of the present theory still goes through. Some interesting new polynomial
sequences now come to light, for example the sequence

Sa(¥) = (x —a)(x —ay) - (x —a,)

and the Goncarov polynomials G,(x). The latter are defined as the unique
polynomials for which G¥’(a,) = 6, . Both these sequences are important in
the theory of interpolation.
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