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Let f(n, p, g) be the maximum possible number of g-cliques among all graphs on n
nodes with no p-clique. Turdn, in 1941, determined f(n, p, 2) for all #n and p. For each n
and p, he found the unique graph which attains this maximum. In this paper we deter-
mine f(n, p, q) for all values of n, p and q. We show that, except for the trivial case
1 €< n < q, Turén’s graph is the unique graph which attains the maximum f(», p, q) for
allg such that 1 < g < p.

1. Introduction and definition of the problem

Given n nodes, let the complete graph on any p of those nodes be
called a p-clique. Let f(n, p, ¢) be the maximum possible number of g-
cliques among all graphs on n nodes with no p-clique. Turan [2], in 1941,
in Hungarian, and again in 1954, in English, determined f(n, p, 2), as well
as the unique graphs giving these maxima. In 1962, Moon and Moser [1],
determined f(#n, 4, 3).

In this paper we determine f(n, p, q) for all n, p and g. We show that
the graphs of Turin, which we call T(n, p), maximize the number of g-
cliques for all values of ¢, under the restriction that there be no p-clique.
Moreover, provided 1 < g < p and g < n, T(n, p) is the only graph on n
nodes (up to isomorphism) which maximizes the number of g-cliques,
under the restriction that there be no p-clique. From now on, we will
assume g < p. We will dispose of the case p < g separately in Theorem 1.

* The author is indebted to Professor Micha A. Perles for his helpful suggestions concerning the
writing of this paper.
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2. A preliminary lemma
To begin we establish the following lemma.

Lemma 1. If p — 1 < n, and if G is any graph on n nodes with f(n,p, q)
g-cliques, but no p-clique, then G has a (p— 1)-clique.

Proof. Let E be a clique contained in G with a maximal number of nodes;
say E is a k-clique. Theng< k< p-—-1.If g < k< p—1, take a node of G
which is not in E; call it v. Not all edges connecting v with £ are in G, for
otherwise there would be a (k + 1)-clique. Let {v, u} be an edge, with

u € E, which is not in G. Then we may add a g-clique to G as follows.
Taken any gq ',2 nodes of E not including u, say {u,, ..., uq_z}, to-
gether with u and v. Form the g-clique with nodes {u, ..., u -2 % v}.
Call it F. Now F is not in G since the edge {, v} isnot in G. Moreover,
we may add F to G without creating a p-clique. To see this, first remark
that all the edges added to G contain v. Hence if we do create a p-clique,
say on the nodes {sy0 0 sp}, then v is one of the S; and the otherp—1
of the s; must have formed a (p — D-~clique before the addition of F. This
contradicts the maximality of kK < p—1 and proves the lemma.

3. The definition of T(n, p)

Let T(n, p) be the graph on n nodes defined as follows. If n = r (mod
p—1),0< r< p-2, form r sets with (n—r)/(p—1) + 1 nodes each, and
p—1—r sets with (n—r)/(p — 1) nodes each. Call these sets Sl,..., Sp_1 .
Take all possible edges connecting nodes of S; to nodes of S]., fori#j.
This is T(n, p). Notice that the total number of g-cliques in T(n, p) is

q
r\(n—r k{p—r—1\(n—r\a-k
=B ()00
(n.p.4) k=0 \k/\p-—-1 g—k /\p—1
We note that if n =r, then t(r, p, q) = (2). Also, if r = 0, then #(n, p, @) has
the particularly simple form,

tnp q)= (p_f_l)q (p; 1).
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4. The definition of g-cliques of type 1, type 2 and type 3

Let H be any graph on n nodes, n > p, with no p-clique, and with a
positive number of g-cliques. Suppose H has a (p — 1)-clique, say E. Then
we can define three types of g-cliques in H with respect to E. Those
whose nodes form a subset of the nodes of E, call these cliques of type 1;
those whose nodes are disjoint from the nodes of E, call these cliques of
type 2, and those cliques which are neither of type 1 nor of type 2, call
these cliques of type 3.

It is clear that the three types of cliques form three disjoint classes. It
is also clear that H has exactly (”; 1y g-cliques of type 1. Furthermore,
since H has no p-clique, it has at most f(n—p+1, p, q) g-cliques of type 2.
We now compute an upper bound for the number of g-cliques of type 3
in H.

For each choice of a k-clique, 1 < k < g —1, which does not intersect
E, consider the number of g-cliques of type 3 which use only those k
nodes from outside of E. These g-cliques can involve altogether at most

p—k—1 of the nodes of E, otherwise there would be a p-clique. Since
each one of these g-cliques uses exactly g —k nodes of E, there can be at
most (”q’ f; 1y such g-cliques. Moreover, there are at most f(n—p+1,p, k)
choices of distinct k-cliques which do not intersect E. Therefore, the
total number of g-cliques of type 3 is at most

q-1

> (p_k_l) fin—p+1,p,k) .

k=1 q—k

5. The main result

We are now ready to prove the main result.
Theorem 1. For all positive integers q, T(n, p), as defined in Section 3,
has f(n, p, q) q-cliques and no p-clique. Moreover, if 1 < g<pandq<n,
then T(n, p) is the only graph on n nodes (up to isomorphism) with
f(n, p, q) g-cliques and no p-clique.

Proof. First, it is clear from the definition that 7(n, p) contains no p-
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clique. Now for the case p < g, f(n, p, q) = 0. Also T(n, p) contains no
p-clique, hence no g-clique, and thus gives the maximum f(n, p, ¢) num-
ber of g-cliques. In the rest of the proof, we assume g < p.

Fix p; we proceed by induction on #u, for all g such that 1 < g < p.

By way of initial conditions, we consider the case 1 < n< p—1. For
this case, T(n, p) is simply the complete graph on n nodes. Clearly, it has
the maximum number of g-cliques, for 1 < g < p. Moreover, for 1<g<n,
the complete graph on n nodes is the only graph with the maximum num-
ber of g-cliques.

Now suppose the theorem is true for n. We will show it is also true for
n+ p—1. Choose any g < p. First we show that T(n +p—1, p) has
flntp—1,p,q) g-cliques. Let E be a (p— 1)-clique of T(n+p—1, p). We
compute the number of g-cliques in T(n+p—1,p) of type i, i=1,2,3,
with respect to E. The number of g-cliques of type 1 is (P ; 1y, The num-
ber of g-cliques of type 2 is f(n, p, q). This is because if we remove from
T(n+p—1, p) the (p— 1)-clique E, together with all edges having nodes
in E, we are left with T(n, p), and by the induction hypothesis, this has
f(n, p, q) q—cliques. Finally, T(n +p— 1, p) has

q-1

p—k-—1
kz=31( q-k ) fn.p. k)

g-cliques of type 3. This is because, by the induction hypothesis, there
are f(n, p, k) choices of k-cliques in T(n, p) (that is, f(n, p, k) choices of
k-cliques in T(n +p — 1, p) which are disjoint from F), and for each such
choice, there are (pl; f;l ) g-cliques of type 3 using only the nodes of that
k-clique from outside E. So we see that T(n+p— 1, p) has the maximum
possible number of g-cliques of each type (see Section 4). Hence
T(n+p—1, p) has the maximum total number of g-cliques, namely
fin¥p—1,p,9).

We must also show that for [ <g<n+p—1[, T(n+p—1,p)isthe
only graph on n+p—1 nodes having f(n +p—1, p, g) g-cliques and no
p-clique. So suppose G is a graph on n+p—1 nodes with f(n+p—1,p,q)
g-cliques and no p-clique. Then we will show G is T(n +p—1, p). Since
p—1<n+p—1,by Lemma 1, G has a (p—1)-clique. Call it £. Now
since T(n+p—1, p) has the maximum possible number of g-cliques of
each type relative to any of its (p — 1)-cliques, so must G. Hence if we
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remove from G the (p —1)-clique F, together with all edges having nodes
in £, we are left with a graph on n nodes with f(n, p, g) g-cliques and no
p-clique. We claim this must be T(n, p). If 1 < g < n, then the uniqueness
part of the induction hypothesis establishes this. If n = 1, T(n, p) is the
only graph on one node. If 1 < n < ¢, then we appeal to the fact that
there are

"5 ( p—k—1

k=1

L )T m

g-cliques of type 2 in G. Take the term corresponding to k£ =2. Then

there must be (p:23 ) f(n, p, 2) g-cliques of type 3 using exactly one edge
from outside £. But n < g, together with g < p, implies n < p, and so

fln, p, 2) = (7). Now in order for there to be (Z:g) (4) g-cliques of type

3 using exactly one edge from outside £, there must be (%) choices of
such edges. That is, the complement of £ in G must be the complete graph
on »n nodes, which in this case, is exactly 7(n, p).

So G is T(n, p), together with a (p — 1)-clique £ and some additional
edges connecting T(n, p) with E. Now let the nodes of E be ny, ..., ny_qs
and let the sets described in the definition of T(n, p) be Sl, Sp_ T

Suppose first that no S, is empty. Then no n; can be connected to a
node in each of the §;,i =1, ..., p—1, since, by the definition of T(n, p),
that would produce a p-clique. But #, must be connected to each node
in all but one of the S;. To see this, suppose n; was not connected to any
node of S, , nor to some node, say v, of S;, / # k. There exists

qil (p —k—1
k=1

)b

g-cliques of type 3, so for k = 1, there must exist ({q’:f Yfln,p, 1) = (5:2)n
g-cliques which use only one node from outside of £. This means that
each of the n nodes outside of £ must be connected top—2 of the p—1
nodes of E. Now choose a node w from S, . Then w is not in £ and is not
connected to n;. Therefore, it must be connected to all n i j # i. Similarly,
v must be connected to all n, j # i. But v is connected to w. Therefore,
the set of p—2 nodes of E, not including n;, together with v and w, form
a p-clique. Hence n; must be connected to v.

Moreover, if n ; and n; are two distinct nodes of E, they cannot be con-
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nected to all nodes of the same p—2 sets from among S, ..., Sp_1 be-
cause they are connected to each other, and that would produce a p-clique.
Therefore we may assume that 7, is connected to all the nodes of each S].
for j # i. But now we see that sets Sl, Ufn},i= l,...,p—1, together

with the edges of G form exactly T(n +p—1, p). The readers, if there

are any, are urged to draw a diagram.

Now suppose that, for £ > 0, the sets Sl, ..., 5 are empty and the
sets S, 0 o Spﬁ1 are not empty. Then each S]., j= k+1, contains exact-
ly one element. Let S]. = {s].} forj> k+ 1. For each suchj, ; cannot be
connected to all of the n, i=1,..,p—1. But 5; must be connected to all
of the n; except one, for the same reason as before. By the definition of
T(n, p), s, is connected to 5; for all i # j. This means that s; and s; cannot
be connected to the same set of p —2 nodes of E. So we may assume that
s; is not connected to n; fori=k+1,...,p—1, and again we see that G is
T(n+p-—1, p). This completes the proof.

6. The asymptotic behavior of f(n, p, q)

We make a final remark about the behavior of f(n, p, ¢), for fixed p
and g, as n approaches infinity. For n = 0 (mod p—1),

fin, p, q) = (pil)q(pgl) .

Forn=r(modp—1),r# 0,

fon—r,p, )< fin,p, ) <fn—r+tp—1,p,q).

So the limit, as » approaches infinity, of the ratio of f(», p, g) to the total
number of possible g-cliques in a graph on n nodes is

tim (") in. p, q)=(”“‘i;'_"l(;*” .

This limit is smallest when p = g + 1, in which case we get (¢— 1)!/g q-1
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