THE MAXIMUM NUMBER OF q-CLIQUES IN A GRAPH WITH NO p-CLIQUE *

Steven ROMAN

Department of Mathematics, University of Washington, Seattle, Wash. 98195, USA

Received 12 May 1975

Let f(n, p, q) be the maximum possible number of q-cliques among all graphs on n nodes with no p-clique. Turán, in 1941, determined f(n, p, 2) for all n and p. For each n and p, he found the unique graph which attains this maximum. In this paper we determine f(n, p, q) for all values of n, p and q. We show that, except for the trivial case $1 \le n < q$, Turán's graph is the unique graph which attains the maximum f(n, p, q) for all q such that 1 < q < p.

1. Introduction and definition of the problem

Given n nodes, let the complete graph on any p of those nodes be called a p-clique. Let f(n, p, q) be the maximum possible number of q-cliques among all graphs on n nodes with no p-clique. Turán [2], in 1941, in Hungarian, and again in 1954, in English, determined f(n, p, 2), as well as the unique graphs giving these maxima. In 1962, Moon and Moser [1], determined f(n, 4, 3).

In this paper we determine f(n, p, q) for all n, p and q. We show that the graphs of Turán, which we call T(n, p), maximize the number of q-cliques for all values of q, under the restriction that there be no p-clique. Moreover, provided 1 < q < p and $q \le n$, T(n, p) is the only graph on n nodes (up to isomorphism) which maximizes the number of q-cliques, under the restriction that there be no p-clique. From now on, we will assume q < p. We will dispose of the case $p \le q$ separately in Theorem 1.

^{*} The author is indebted to Professor Micha A. Perles for his helpful suggestions concerning the writing of this paper.

2. A preliminary lemma

To begin we establish the following lemma.

Lemma 1. If $p-1 \le n$, and if G is any graph on n nodes with f(n, p, q) q-cliques, but no p-clique, then G has a (p-1)-clique.

Proof. Let E be a clique contained in G with a maximal number of nodes; say E is a k-clique. Then $q \le k \le p-1$. If $q \le k < p-1$, take a node of G which is not in E; call it v. Not all edges connecting v with E are in G, for otherwise there would be a (k+1)-clique. Let $\{v,u\}$ be an edge, with $u \in E$, which is not in G. Then we may add a q-clique to G as follows. Taken any q-2 nodes of E not including u, say $\{u_1, ..., u_{q-2}\}$, together with u and v. Form the q-clique with nodes $\{u_1, ..., u_{q-2}, u, v\}$. Call it E. Now E is not in E0 since the edge E1, E2 is not in E3. Moreover, we may add E4 to E5 without creating a E5-clique. To see this, first remark that all the edges added to E6 contain E7. Hence if we do create a E7-clique, say on the nodes E8, ..., E9, then E9 is one of the E9 and the other E9 of the E9 must have formed a E9-clique before the addition of E9. This contradicts the maximality of E8 not in E9 and proves the lemma.

3. The definition of T(n, p)

Let T(n,p) be the graph on n nodes defined as follows. If $n \equiv r \pmod{p-1}$, $0 \le r \le p-2$, form r sets with (n-r)/(p-1)+1 nodes each, and p-1-r sets with (n-r)/(p-1) nodes each. Call these sets S_1, \ldots, S_{p-1} . Take all possible edges connecting nodes of S_i to nodes of S_j , for $i \ne j$. This is T(n,p). Notice that the total number of q-cliques in T(n,p) is

$$t(n, p, q) = \sum_{k=0}^{q} {r \choose k} \left(\frac{n-r}{p-1} + 1\right)^k {p-r-1 \choose q-k} \left(\frac{n-r}{p-1}\right)^{q-k}.$$

We note that if n = r, then $t(r, p, q) = {r \choose q}$. Also, if r = 0, then t(n, p, q) has the particularly simple form,

$$t(n, p, q) = \left(\frac{n}{p-1}\right)^q \binom{p-1}{q}.$$

4. The definition of q-cliques of type 1, type 2 and type 3

Let H be any graph on n nodes, $n \ge p$, with no p-clique, and with a positive number of q-cliques. Suppose H has a (p-1)-clique, say E. Then we can define three types of q-cliques in H with respect to E. Those whose nodes form a subset of the nodes of E, call these cliques of type 1; those whose nodes are disjoint from the nodes of E, call these cliques of type 2, and those cliques which are neither of type 1 nor of type 2, call these cliques of type 3.

It is clear that the three types of cliques form three disjoint classes. It is also clear that H has exactly $\binom{p-1}{q}$ q-cliques of type 1. Furthermore, since H has no p-clique, it has at most f(n-p+1,p,q) q-cliques of type 2. We now compute an upper bound for the number of q-cliques of type 3 in H.

For each choice of a k-clique, $1 \le k \le q-1$, which does not intersect E, consider the number of q-cliques of type 3 which use only those k nodes from outside of E. These q-cliques can involve altogether at most p-k-1 of the nodes of E, otherwise there would be a p-clique. Since each one of these q-cliques uses exactly q-k nodes of E, there can be at most $\binom{p-k-1}{q-k}$ such q-cliques. Moreover, there are at most f(n-p+1,p,k) choices of distinct k-cliques which do not intersect E. Therefore, the total number of q-cliques of type 3 is at most

$$\sum_{k=1}^{q-1} {p-k-1 \choose q-k} f(n-p+1, p, k) .$$

5. The main result

We are now ready to prove the main result.

Theorem 1. For all positive integers q, T(n, p), as defined in Section 3, has f(n, p, q) q-cliques and no p-clique. Moreover, if 1 < q < p and $q \le n$, then T(n, p) is the only graph on n nodes (up to isomorphism) with f(n, p, q) q-cliques and no p-clique.

Proof. First, it is clear from the definition that T(n, p) contains no p-

clique. Now for the case $p \le q$, f(n, p, q) = 0. Also T(n, p) contains no p-clique, hence no q-clique, and thus gives the maximum f(n, p, q) number of q-cliques. In the rest of the proof, we assume q < p.

Fix p; we proceed by induction on n, for all q such that $1 \le q < p$. By way of initial conditions, we consider the case $1 \le n \le p-1$. For this case, T(n, p) is simply the complete graph on n nodes. Clearly, it has the maximum number of q-cliques, for $1 \le q < p$. Moreover, for $1 < q \le n$, the complete graph on n nodes is the only graph with the maximum number of q-cliques.

Now suppose the theorem is true for n. We will show it is also true for n+p-1. Choose any q < p. First we show that T(n+p-1,p) has f(n+p-1,p,q) q-cliques. Let E be a (p-1)-clique of T(n+p-1,p). We compute the number of q-cliques in T(n+p-1,p) of type i, i=1,2,3, with respect to E. The number of q-cliques of type 1 is $\binom{p-1}{q}$. The number of q-cliques of type 2 is f(n,p,q). This is because if we remove from T(n+p-1,p) the (p-1)-clique E, together with all edges having nodes in E, we are left with T(n,p), and by the induction hypothesis, this has f(n,p,q) q-cliques. Finally, T(n+p-1,p) has

$$\sum_{k=1}^{q-1} {p-k-1 \choose q-k} f(n, p, k)$$

q-cliques of type 3. This is because, by the induction hypothesis, there are f(n, p, k) choices of k-cliques in T(n, p) (that is, f(n, p, k) choices of k-cliques in T(n+p-1, p) which are disjoint from E), and for each such choice, there are $\binom{p-k-1}{q-k}$ q-cliques of type 3 using only the nodes of that k-clique from outside E. So we see that T(n+p-1, p) has the maximum possible number of q-cliques of each type (see Section 4). Hence T(n+p-1, p) has the maximum total number of q-cliques, namely f(n+p-1, p, q).

We must also show that for $1 < q \le n+p-1$, T(n+p-1,p) is the only graph on n+p-1 nodes having f(n+p-1,p,q) q-cliques and no p-clique. So suppose G is a graph on n+p-1 nodes with f(n+p-1,p,q) q-cliques and no p-clique. Then we will show G is T(n+p-1,p). Since $p-1 \le n+p-1$, by Lemma 1, G has a (p-1)-clique. Call it E. Now since T(n+p-1,p) has the maximum possible number of q-cliques of each type relative to any of its (p-1)-cliques, so must G. Hence if we

remove from G the (p-1)-clique E, together with all edges having nodes in E, we are left with a graph on n nodes with f(n, p, q) q-cliques and no p-clique. We claim this must be T(n, p). If $1 < q \le n$, then the uniqueness part of the induction hypothesis establishes this. If n = 1, T(n, p) is the only graph on one node. If 1 < n < q, then we appeal to the fact that there are

$$\sum_{k=1}^{q-1} {p-k-1 \choose q-k} f(n, p, k)$$

q-cliques of type 2 in G. Take the term corresponding to k = 2. Then there must be $\binom{p-3}{q-2}$ f(n, p, 2) q-cliques of type 3 using exactly one edge from outside E. But n < q, together with q < p, implies n < p, and so $f(n, p, 2) = \binom{n}{2}$. Now in order for there to be $\binom{p-3}{q-2}$ $\binom{n}{2}$ q-cliques of type 3 using exactly one edge from outside E, there must be $\binom{n}{2}$ choices of such edges. That is, the complement of E in G must be the complete graph on n nodes, which in this case, is exactly T(n, p).

So G is T(n,p), together with a (p-1)-clique E and some additional edges connecting T(n,p) with E. Now let the nodes of E be $n_1, ..., n_{p-1}$, and let the sets described in the definition of T(n,p) be $S_1, ..., S_{p-1}$.

Suppose first that no S_i is empty. Then no n_i can be connected to a node in each of the S_i , i=1,...,p-1, since, by the definition of T(n,p), that would produce a p-clique. But n_i must be connected to each node in all but one of the S_i . To see this, suppose n_i was not connected to any node of S_k , nor to some node, say v, of S_i , $l \neq k$. There exists

$$\sum_{k=1}^{q-1} {p-k-1 \choose q-k} f(n, p, k)$$

q-cliques of type 3, so for k=1, there must exist $\binom{p-2}{q-1}$ $f(n,p,1)=\binom{p-2}{q-1}n$ q-cliques which use only one node from outside of E. This means that each of the n nodes outside of E must be connected to p-2 of the p-1 nodes of E. Now choose a node w from S_k . Then w is not in E and is not connected to n_i . Therefore, it must be connected to all n_j , $j \neq i$. Similarly, v must be connected to all n_j , $j \neq i$. But v is connected to w. Therefore, the set of p-2 nodes of E, not including n_i , together with v and w, form a p-clique. Hence n_i must be connected to v.

Moreover, if n_i and n_j are two distinct nodes of E, they cannot be con-

nected to all nodes of the same p-2 sets from among $S_1, ..., S_{p-1}$ because they are connected to each other, and that would produce a p-clique. Therefore we may assume that n_i is connected to all the nodes of each S_j for $j \neq i$. But now we see that sets $S_i \cup \{n_i\}$, i=1, ..., p-1, together with the edges of G form exactly T(n+p-1,p). The readers, if there are any, are urged to draw a diagram.

Now suppose that, for k > 0, the sets $S_1, ..., S_k$ are empty and the sets $S_{k+1}, ..., S_{p-1}$ are not empty. Then each $S_j, j \ge k+1$, contains exactly one element. Let $S_j = \{s_j\}$ for $j \ge k+1$. For each such j, s_j cannot be connected to all of the n_i , i = 1, ..., p-1. But s_j must be connected to all of the n_i except one, for the same reason as before. By the definition of T(n, p), s_i is connected to s_j for all $i \ne j$. This means that s_i and s_j cannot be connected to the same set of p-2 nodes of E. So we may assume that s_i is not connected to n_i for i = k+1, ..., p-1, and again we see that G is T(n+p-1, p). This completes the proof.

6. The asymptotic behavior of f(n, p, q)

We make a final remark about the behavior of f(n, p, q), for fixed p and q, as n approaches infinity. For $n \equiv 0 \pmod{p-1}$,

$$f(n, p, q) = \left(\frac{n}{p-1}\right)^q \binom{p-1}{q}.$$

For $n \equiv r \pmod{p-1}$, $r \neq 0$,

$$f(n-r, p, q) \le f(n, p, q) \le f(n-r+p-1, p, q)$$
.

So the limit, as n approaches infinity, of the ratio of f(n, p, q) to the total number of possible q-cliques in a graph on n nodes is

$$\lim_{n \to \infty} \binom{n}{q}^{-1} f(n, p, q) = \frac{(p-q) \dots (p-1)}{(p-1)^q} .$$

This limit is smallest when p = q + 1, in which case we get $(q - 1)!/q^{q-1}$.

References

- [1] J.W. Moon and L. Moser, On a problem of Turán, Magyar Tud. Akad. Mat. Kutató Int. Közl. 7 (1962) 283–286.
- [2] P. Turán, On the theory of graphs, Colloq. Math. 3 (1954) 19-30.