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Preface

The Philosophy of This Book

First, a word about the philosophy of this book.eTourrent trend in mathematical
education is to motivate abstract concepts by dhicing applications as quickly as

possible, in an effort to satisfy those studentssehoverriding question is “of what use is
this material?”

On the other hand, while | certainly respect thews of those whose main concern is
whether or not the subject matter at hand has @gfuins to the real world, | have chosen
to take a more abstract approach to the subjebamd. | am a pure mathematician and
appreciate mathematics as art form , as well as the rstone of all science and
technology.

Merriam-Webster defines art as follows:

something that is created with imagination andl skid that is beautiful
or that expresses important ideas or feelings

What could possibly fit this description more a@taty than mathematics!?

Thus, while there will be plenty @xamples to motivateetboncepts, there will be few if
any applications of the subject matter to otheasu®f mathematics or the sciences. | hope
that my readers can appreciate the matddalits intrinsic beauty , gasbne might
appreciate a Shakespeare play or a Beethoven sympho

The Details

Now, as to the details of this book. There are i@veulti-volume series in abstract
algebra, but as far as | am aware, they are ahded for the graduate student. | grew up
with two such series, which were classics even ynearly days—the three-volume series
by Nathan Jacobson and the two-volume series bieBlagendert van der Waerden, both
of which require considerable experience beforeettatting and neither of which were an
easy read by any means.
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So why not a multi-volume series in abstract algdbr those who are have less experience
but are nevertheless interested in undertakisgiaus course n abstract algebra?

This is the first volume in the series. It is deadbto group theory. Subsequent volumes will
be devoted to rings, fields, vector spaces and teedu

| come now to another point of apparent controvelrsymy opinion, every student new to
abstract algebra should be givenstart dose of ofdeory (partially ordered sets,
maximal and minimial elements, meets and joaigje beginning d smChapter 3 of this
book is devoted to this subject. (Chapter 1 is a@sde and Chapter 2 is devoted to
preliminaries.)

There will be many critics who say that this matker$ distracting and unmotivated. | can
only say that the basic ideas of order theory dmguitious in abstract algebra and are
essential to an understanding of many conceptsuginaut algebra. Also, since the
approach of this book is abstract, | will assumat the readers of this book are able to
appreciate the small amount of order theory asrifoan as well. | will also say to those

who are anxious to plunge immediately into groueotly that a little patience will pay

dividends later. Of course, those who are famiidth the basic concepts of partially

ordered sets and lattices (not much beyond thenitlefi) may feel free to skip Chapter 3

and refer to it later as needed.

| have kept the prerequisites for this book to asomable minimum, namely, a grasp of
elementary linear algebra, as is usually taugl finst course on the subject. We will not
have much need for linear algebra per se untilr latdumes, but the oft-mentioned
mathematical maturity that such a course provides will be extremely foélmm making
one's way through the present series.

| believe it is somewhat customary at this pointstonmarize the topic coverage of the
volume for which this is the preface, but | willrgly (and respectfully) ask you to examine
the table of contents for such a summary.

Why?

For some readers, this book may be a first expegienith a serious course abstract
mathematics, having perhaps had only calculus, retisc mathematics, elementary
differential equations and the aforementioned etearg linear algebra prior to undertaking
this course.

Accordingly, along with a first exposure to serioaisstract mathematics comes a first
exposure to serious abstrabinking . This raises thee is§thow best tahink while
reading. If | were to give my readers only one single pieaf advice, it would be to
constantly question. If you are not saying to yourself “why is thisitgment true?” several
times an hour, then you are probably not as inwblvigh the subject matter as you should
be.
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To help with this, you will find the phrase “(why)berally sprinkled throughout the text.
This is a hint for you to pause a moment to makes ghat you understand why the
accompanying statement is true. On the other hawbgnizing that these insertions may
become annoying, | have not included nearly as rhaoyld have done. (This is a hint.)

If I were allowed the luxury of giving some addited advice to my readers, | would offer
the following two pieces:

1) Practice, practice, practice. That is why thelblbas exercises. The more exercises you
attempt, the more easily you will absorb the mateAlong with trying the exercises,
whenever you read the statement of a theorem, lyould pause a few moments to see
if you can construct a proof before reading my frad@ho knows, perhaps you can
come up with a better proof than mine—It has bemmedefore.

2) The most important practical thing you can ddlevieading is to

immediately memorize all definitions as they appear in the text before reading on.

After all, the definitions form theocabulary of the subjeeind who can learn any
subject without memorizing its vocabulary?

| know that memorization is not a fun thing to dwt after a while, it will become
easier. To this end, | have in many cases avoideddmmon practice of introducing
definitions at the start of a discussion, at wipdint they are essentially impossible to
motivate. | find that a little motivation makesntuch easier for me to remember a
definition and | am sure that | am not alone irsthibelieve thagenerally speaking ,
the best time for a definition is when itriseded  arat hefore it is needed.

This advice applies not only to formal definitiofusing the heading “Definition”) but
also to all terms that appear in bold face withia text, since these are what you might
call “in-line definitions” and are equally importian

I ndex of Symbols

There is an index of symbols at the back of thekb@ocase you encounter a symbol that
you do not recognize. Also, we will use the follagiisymbols often:

1) N={0,1,...,}, the natural numbers, whidb  inclugle |,
2) Z = the integers,

3) zt=1{1,2,...}, the positive integers,

4) Q = the rational numbers,

5) R = the real numbers,

6) C = the complex numbers.

Greek Alphabet

It seems that mathematicians never have enoughaygmi particular, the usual Roman
alphabet does not supply enough symbols to deneigables of different types.
Accordingly, mathematicians find it necessary tacteout to other alphabet systems.
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Some of the older classic abstract algebra textbgostably by Nathan Jacobson) that this
author used as a student employFnaktur alphabet shelow.

ABEDEFSEHTIJREMNOPARGSTUVWXY 3
abcdef hijtlmnopgrstuoror;

However, as much as | enjoyed the added confubatrthis alphabet provided while trying
to learn algebra, | will not use it in this bookof example, compare the upper cas&lA ( )
with the upper case WI( ).)

It is fair to say that all mathematicians (and mmathematics books) make extensive use of
the Greek alphabet, shown in the table below. If yend to study mathematics seriously,
knowledge of this alphabet is essential.

A « alpha | Hn eta N nu T tau

B 3 beta |© 6 theta |2 ¢ xi T v upsilgn
I' v+ gammal 1. iota O o omicrgn® ¢ phi
A 4 delta Kk kappa|Il = pi Xx chi

E ¢ epsilon| A A lambda B rho v psi

Z ¢ zeta My mu o sigma|Q w omeda

Good luck and thanks for reading.
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Chapter 1
Introduction: The Big Picture

Perhaps the best place to start a discussion db@mech of mathematics is to first examine
the “big picture” as it were. We begin with an aaléview of mathematics in general.

What is Mathematics?

Mathematics can be thought of as the studsetsfwith structure illistrate, consider the
following list, which suffers from some rather gsosversimplifications, but nonetheless
makes the point.

Mathematical logic is the study of sets with a deductive structure.

Combinatorics is the study of (generallyinite  sets, with a sizacttire.

Graph Theory is the study of (generally) finite sets with &t®nship structure.

Set theory is the study of arbitrary sets with a size stitestand possibly an order
structure.

Number theory is the study of the integers—a set with an initigdrich order and
arithmetic structure.

Order and lattice theory is the study of sets with an order structure.

Point set topologyis the study of sets with a continuity structure.

Algebraic topology is the study of sets with a continuity structwed a related
algebraic structure.

Mathematical analysisis the study of the sels*  with a differentiapitructure.
Differential geometry is the study of general sets with a differentigbstructure.
Probability is the study of sets with a likelihood structure.

Measure theoryis the study of sets with a structure imposed lgneral measure.
Euclidean, affine and projective geometryis the study of sets with an axiom
structure stemming from the notions of angle, peliain and invariance under certain
types of transformations.

Last but certainly not least, we come to the suhpéthis series

Abstract algebra is the study of sets with ahgebraic  amithmetic  structure.
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Of course, these areas of mathematics overlap aenadily and the boundaries between
areas are not at all well defined.

What is Algebra?

An algebraic structure is given to a set by definime or mor@lgebraic operations on the

set. With the exception of the operation of scafaitiplication in modules and vector
spaces, all of the algebraic operations that wesiidy are either nullary, unary or binary
operations on the set. Let us define these terms.

1) Anullary operation on a nonempty set is simply an element of

2) Aunary operation onA is a functiom: A — A .

3) A binary operation on a nonempty set is a functignhA x A — A that takes
ordered paifa,b) of elements @f and produces an@leenent ofA . there are two
commonly used notations for binary operations. Wheditive notation is used, we
write the image ofa,b) under the operatipn as

a+b

in which case the operation is calladdition . Whaudtiplicative notation edys
we write f(a,b) in any of the following ways

ab or axb or a-b

in which case the operation is callediltiplicaton . The fifsthese multiplicative
notationsab is the most common and is cajledaposition

When a set has two binary operations defined omvet,generally use addition for the
stronger (the operation that has more propertig@ration and multiplication for the
weaker operation.

It might seem to you that defining a nullary openaton A as an element of the set is
more trouble than it is worth. Why not just sim@gy “an element oA ?” Well, many

mathematicians do, but there is a point in makimg definition. Simply put, we want to be

able to refer to the algebraic structure as thiectibn of all algebraic operations on the set,
without needing to mention specific elements of $bé Put another way, the nullary and
unary operations are just as important as the piaperations and so should have “equal
status” as operations. While this discussion mayseem entirely clear at this point, we
will clarify the discussion with a concrete examplben we define groups, later in the
book.

Algebraic operations can be very general. For exanfipr the set
X = {a,b}
we can define an operation called addition by rsgtti
at+a=a, a+b=a, b+a=b, b+b=0b

Admittedly, this is not very useful, but it demanagés the point that any nonempty set can
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be given an algebraic structure. Obviously, absafgebra is the study obeful  algebraic
structures.

For example, you undoubtedly know that functionstles real numbers can be added and
multiplied. Thus, the set

F={f:R—R] fis afunction

of all functions orR has two binary operations)ezhladdition and multiplication, defined
for f,g € F by

(f +9)(x) = f(z) + g(x)
(f9)(x) = [(x)g(x)

We can also take the negative of any funcfion indefby
(=N)(z) = =(f(2))

The mapf — (—f) is a unary operation. The zero functi¢m) =0 nd the identity
function f(z) =z are nullary operations worth singling obécause of their nice
properties. Of course, by definition, any elemeinfois a nullary operation, but the other
elements don't have such nice algebraic properties.

Because of the properties of these binary, unady rarlary operations, which we will
discuss at the appropriate time, this structuaniexample of an algebraic structure known
as aring .

Abstract algebra can be divided into several diif¢rsubareas, based on both nbmber

of algebraic operations defined on the set ancheprioperties of these operations. Here is
a partial list of the different types of algebraituctures that algebraists study. We will
study the structures shown in bold in some detail.

Semigroup 1 binary)

Monoid (I binary,l nullary)

Group (1 binary,1 unaryl nullary)

Ring (2 binary,1 unary] or2 nullary)

Integral Domain (special types of ring)

Field (2 binary,1 unary2 nullanand one unaryartial operation)

Module (1 binary, 1 unary,1 nullary and one non-operation called scalar
multiplication)

e Vector Space (1 binary, 1 unary,1 nullaryand one non-operation called scalar
multiplication)

Lattice (2 binary)

Boolean Algebra(2 binary,1 unary2 nullary

As you no doubt know, in the case of vector spdaed modules), one of the operations,
calledscalar multiplication is not a true operation. For examplé/ is a ivector space over
the real numbnerR , then scalar multiplication fisrection
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fRxV >V
which is not a binary operation. We will discusis further at the appropriate time.

What Are Algebraic Properties Like?

Algebraic operations in themselves are of littldugaunless we require that they satisfy
someproperties . To get a feel for the types of properties we will study throughout this
lecture series, here is a list of the propertiesaddition and multiplication for the real
numbersR .

1) (Associativity) Foralla b ¢ € R,
(a+b)+c=a+(b+c¢) and (ab)c = a(bc)
2) (Commutivity) Foralla b € R,
a+b=b+a and ab=ba
3) (Distributivity ) For alla,b,c € R,
(a+b)c=ac+bc and a(b+c)=ab+ac

4) (Nullary Operations—Identity Elements) There exists an elemefitc R , called the
additive identity or zeroelement of R for which

O+a=a+0=a

for all @ € R. Also, there exists an element R, called rihultiplicative identity
(or sometimes just thidentity ) for which

la=al =a

foralla € R.

5) (One Unary Operation and One Partial Unary Operation-Inverse§ For each
a € R, there is an element called théditive inverse  megative «of and d=hby
—a, for which

a+(—a)=(—a)+a=0

For eacmonzero element < R , there is an element calledntiigplicative inverse
of a and denoted by~* , for which

-1

aa” ! =a7t

a=1
Because the s&®® together with the operations ditiad and multiplication satisfies the
properties listed above, it is an example Gtk

You might be wondering why we bother to study atgabstructures in the rather abstract
setting of an arbitrary sethose elements are unspecified  with a collection dfebraic
operations having certain properties. Why do wesimaply study the “important” algebraic
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structures, such as the ones that come from numibeitions, matrices, polynomials and
so on?

The reason is actually quite simple. Every time prveve some fact about arbitrary
group for example, that fact applies at oncelto oupgs. Therefore, we don't need to prove
a version of that result for each important groepasately. This ikusbandry at its finest.
Also, it tells us that the fact we proved does depend on any specific properties of the
elements of a group, such as numbers, functions or matrisesrather it dependmly on
the defining properties of the group structure stikia very useful piece of information.

Common Themes Throughout Algebra

Once you have studied various types of algebraictires, such as groups, rings, fields
and vector spaces, you will notice that there dog af common themes running throughout
each subject. Rather than realize this after shgdyhese algebraic structures, it makes
more sense to realize this before studying thegebahic structures, to whatever extent this
is possible. So let us take a general look at themmes now. Note that they may not occur
in precisely the same order as we describe thera. hsunthors generally have some
discretion in this matter.

Let us imagine an unspecified type of algebraiacstre, called avidget . Thus, widgets
could be groups, or they could be rings, or theyldtde fields or they could be vector
spaces and so on.

The Definition of a Widget

When you study widgets, the first thing you willcemnter is, of course, the definition of a
widget. This will be followed by a few of the basionsequences of the definition. For
example, one common consequence isuigueness of cestgects described in the
definition. For instance, the definition of mostdgeéts includes the existence of a special
identity element (which is a nullary operation) for each binary m@en. It is a
consequence of the properties in the definition ithentity elements are unique, so you are
likely to encounter a small theorem to this effembn after the definition.

Note that because uniqueness of the identity elecanbeproved from the definition of

widget, the statement of uniqueness should notabd fever is) included as part of the
definition. Definitions are supposed to be as lean as pesdiht is, they are generally
intended to contain exactly what is requisgd no more

Subwidgets

The next theme you may encounter is the concem sefibwidget (sufroup , suimg |,
sulfield, subpace and so on). The idea is simplé¥lf  isidget andS is a honempty
subset ofi¥/ , it is natural to wonder whether theslbigic operations defined &%  can be
restricted to the subsetS , making it into a widget as wdllsd, thenS is called a
subwidgetof . Note thatS5 may be a widget unaxner operataseell, but that does
not make it ssubwidget ofV .
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Making New Widgets from Old Widgets

One of the next themes you are likely to encouistéihat of making new widgets from old
widgets.

The Product of Widgets

One way is to do this that applies to many (but aftalgebraic structures is to use the
cartesian product, since widgets are setd¥if dhdare widgets, then the cartesian
producti; x W is the set of ordered pairs of widget elets

W, XW2={<S,t)|$€W1,tEW2}

So if x denotes a binary widget operation, then am tcy to define the product of ordered
pairscomponentwise, that is, we can set

(s,8) * (u,v) = (s *u,txv)

This product construction works for groups, ringsl avector spaces, for example, but it
does not work for fields.

Exponential Widgets

Another way to make new widgets from old widgetsoigakeexponentials (although not
all mathematicians use this terminology) Wt  isvilget andX is a nonempty set, then
the set of all sdunctions fro’X @ , denotedTBy* is oftemidget. The key is that a
widget operation ol can be performed onithages ofdlements under the functions
in W, which lie in/v .

As a simple example, " = Z , the integers, then we @efine the sum and product of
functions inZ* by

(f +9)(x) = f(z) + g(x)
(f9)(x) = [(x)g(x)

for all z € X. Now, as we will see, the integefs fornrtikg under the operations of
ordinary addition and multiplication and so does #etZ* under the operations defined
above.

We should note that sometimég~ is not quite a wijdget it is another “weaker”
algebraic structure. For example, the real numBeferm a field under the operations of
ordinary addition and multiplication, but the &t does not quite make it to a field—it is
merely a ring, which is a weaker algebraic stucture

Quotient Widgets

Another way to make new widgets from old widgetsoigake quotientQuotient widgets
can cause quite some confusion when they are ditsbuntered. Let us see if we can
explain the general idea behind quotient widgetgpp®se thatV is a widget. Of course,
W is also a set. Now, we are interested partitioning the 18etinto nonempty,
nonoverlapping blocks
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P: {Bl,BQ,Bg,...}

as shown in Figure 1, in such a way that we cdti e widget operation(s) from the
elements of W to theblocks of the partitiof?

Figurel

Let us assume that widgets have only one operatidich we will call the product
(denoted by juxtaposition). There is one obviouy teatry to perform this lifting process.
Namely, we define the produg;B;  of tatocks by takinge@iement from each block,
say

a; € B; and aj € Bj

taking their widget produet;a; and then finding thed that contains this product, say it
is Bi.. Then wealefine the product of these two blocks by

B;B; = By

Now we can ask whether this product of blocks Batishe widget properties and so makes
the setP of blocks into a widget as well.

However, there is a potential problem here. The waydefined the product of blocks is
ambiguous. Do you see why?

Suppose someone else pickierent elements from theso®ckndB; , say; € B; and
a’; € B;. Then there is no guarantee that the prodli¢t  aamdare in the same block of
P. If these two products are in different blocksrtthis attempt at defining the product of
blocks fails completely. Put more formally, the gwot is notwell defined .

If we can resolve this potential issue, then thefsdecomes a widget under this “lifted”
operation and is called guotient widget @ . Thus, we have gubtjroups, quotient
rings and quotient spaces. Quotient fields do Rrist €or reasons similar to those that cause
the product construction to fail in the case oldée

Functions Between Widgets

Another common theme in the study of algebraiccstmes is that of aructure-preserving
function between widgets. Ii: W — V' is a function from the wid§tto the widget ,
thenh is structure preserving if
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1) For any binary widget operation (denoted byapxisition), we have
h(wiws) = h(wi)h(w?)
For example, for addition of real numbers, we regjthat
h(a+b) = h(a) + h(b)
2) For any unary operatian — u(w) , we have
h(u(w)) = u(h(w))
For example, for the unary operation of taking tiegative of a real number, we
require that
h(—w) = —h(w)

3) A nullary operation identifies a specific elernana widget. if that element is denoted
by 1, then preservation of this nullary operation is

h(lw) =1y

wherely, is the specified elementiln  drd is theifipd element in/ .

Many mathematicians would say that the concept ddtracture-preserving function
between widgets is almost as important as the gincka widget itself. It is hard to
appreciate why this might be true at this stagiténgame, but suffice it to say that there is
an entire branch of mathematics that attempts tkemast this point! It is calledategory
theory.

The structure-preserving functions between widgedscallednorphisms . There are group
morphisms, ring morphisms, field morphisms, vespace morphisms and so on. Each of
these has a more specific terminology. For instagoeup and ring morphisms are called
homomorphisms Field morphisms are calledmbeddings and vector spacenaodule
morphisms are calleithear transformations

Representations of the Elements of One Widget By the Elements of Another
Widget

There is one final andxtremely important common theme used througimathematics:
that is the technique ofpresentation . Specifically, often &ajrdeal can be learned by
representing one type of mathematical object athendype of mathematical object.

For example, a real numbere R can also be thoughs ¢br represented asfuwnction
namely, multiplication by , which we write as . By, is defined by
R — R, MT(JJ) =TT

The functionu, idijective (one-to-one and onto) and isrrefitto in some contexts keft
translation by r. Note that if we know, , then we also know ncsi
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r= (1)

As another example, in elementary linear algebeathink of matrices such as

n- ()

not just as rectangular arrays of numbers thabeaadded and multiplied together, but also
aslinear transformation (multiplication by\/ ) froniR? t&R?

2 2 a o a+2b
MR — R, M(b> = (3a+4b)

In general, a representation of the elements iidgetA by the elements in another widget
B is generally defined by fanction

NA— B

called therepresentation map for the representation. Thus; A is regmed by the
element\(a) inB .

Now, if the representation map is not injective gda-one), then there will be distinct
elements;; and, id that are represented by the slment

b= )\(al) = /\(0/_))
in B. You might first think that this would ruin thepresentation, but there are in fact

many important representations that are not injectias we will see. When the
representation map is injective, the representasicaid to béaithful

Representing one type of mathematical object byhendype of mathematical object is an
extremely important technique that we will employgreat advantage in this book.



