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Preface

The Philosophy of This Book

First, a word about the philosophy of this book. The current trend in mathematical
education is to motivate abstract concepts by introducing  as quickly asapplications
possible, in an effort to satisfy those students whose overriding question is “of what use is
this material?”

On the other hand, while I certainly respect the views of those whose main concern is
whether or not the subject matter at hand has applications to the real world, I have chosen
to take a more abstract approach to the subject at hand. I am a pure mathematician and
appreciate mathematics as an , as well as the cornerstone of all science andart form
technology.

Merriam-Webster defines art as follows:

something that is created with imagination and skill and that is beautiful
or that expresses important ideas or feelings

What could possibly fit this description more accurately than mathematics!?

Thus, while there will be plenty of  to motivate the concepts, there will be few ifexamples
any applications of the subject matter to other areas of mathematics or the sciences. I hope
that my readers can appreciate the material , just as one mightfor its intrinsic beauty
appreciate a Shakespeare play or a Beethoven symphony.

The Details

Now, as to the details of this book. There are several multi-volume series in abstract
algebra, but as far as I am aware, they are all intended for the graduate student. I grew up
with two such series, which were classics even in my early days—the three-volume series
by Nathan Jacobson and the two-volume series by Bartel Leendert van der Waerden, both
of which require considerable experience before undertaking and neither of which were an
easy read by any means.
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So why not a multi-volume series in abstract algebra for those who are have less experience
but are nevertheless interested in undertaking a  in abstract algebra?serious course

This is the first volume in the series. It is devoted to group theory. Subsequent volumes will
be devoted to rings, fields, vector spaces and modules.

I come now to another point of apparent controversy. In my opinion, every student new to
abstract algebra should be given a  dose of order theory (partially ordered sets,short
maximal and minimial elements, meets and joins)  and so Chapter 3 of thisat the beginning
book is devoted to this subject. (Chapter 1 is a teaser and Chapter 2 is devoted to
preliminaries.)

There will be many critics who say that this material is distracting and unmotivated. I can
only say that the basic ideas of order theory are ubiquitious in abstract algebra and are
essential to an understanding of many concepts throughout algebra. Also, since the
approach of this book is abstract, I will assume that the readers of this book are able to
appreciate the small amount of order theory as an art form as well. I will also say to those
who are anxious to plunge immediately into group theory that a little patience will pay
dividends later. Of course, those who are familiar with the basic concepts of partially
ordered sets and lattices (not much beyond the definition) may feel free to skip Chapter 3
and refer to it later as needed.

I have kept the prerequisites for this book to a reasonable minimum, namely, a grasp of
elementary linear algebra, as is usually taught in a first course on the subject. We will not
have much need for linear algebra per se until later volumes, but the oft-mentioned
mathematical maturity that such a course provides will be extremely helpful in making
one's way through the present series.

I believe it is somewhat customary at this point to summarize the topic coverage of the
volume for which this is the preface, but I will simply (and respectfully) ask you to examine
the table of contents for such a summary.

Why?

For some readers, this book may be a first experience with a serious course in abstract
mathematics, having perhaps had only calculus, discrete mathematics, elementary
differential equations and the aforementioned elementary linear algebra prior to undertaking
this course.

Accordingly, along with a first exposure to serious abstract mathematics comes a first
exposure to serious abstract . This raises the issue of how best to thinking think while
reading. If I were to give my readers only one single piece of advice, it would be to
constantly question. If you are not saying to yourself “why is this statement true?” several
times an hour, then you are probably not as involved with the subject matter as you should
be.
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To help with this, you will find the phrase “(why?)” liberally sprinkled throughout the text.
This is a hint for you to pause a moment to make sure that you understand why the
accompanying statement is true. On the other hand, recognizing that these insertions may
become annoying, I have not included nearly as many I could have done. (This is a hint.)

If I were allowed the luxury of giving some additional advice to my readers, I would offer
the following two pieces:

1) Practice, practice, practice. That is why the book has exercises. The more exercises you
attempt, the more easily you will absorb the material. Along with trying the exercises,
whenever you read the statement of a theorem, you should pause a few moments to see
if you can construct a proof before reading my proof. Who knows, perhaps you can
come up with a better proof than mine—It has been done before.

2) The most important practical thing you can do while reading is to

immediately memorize all definitions as they appear in the text before reading on.

After all, the definitions form the  of the subject, and who can learn anyvocabulary
subject without memorizing its vocabulary?

 I know that memorization is not a fun thing to do, but after a while, it will become
easier. To this end, I have in many cases avoided the common practice of introducing
definitions at the start of a discussion, at which point they are essentially impossible to
motivate. I find that a little motivation makes it much easier for me to remember a
definition and I am sure that I am not alone in this. I believe that ,generally speaking
the best time for a definition is when it is  and not before it is needed.needed

 This advice applies not only to formal definitions (using the heading “Definition”) but
also to all terms that appear in bold face within the text, since these are what you might
call “in-line definitions” and are equally important.

Index of Symbols

There is an index of symbols at the back of the book, in case you encounter a symbol that
you do not recognize. Also, we will use the following symbols often:

1) , the natural numbers, which  include ,� œ Ö!ß "ßá ß × !do
2) the integers,™ œ
3) , the positive integers,™� œ Ö"ß #ßá ×
4) the rational numbers,� œ
5) the real numbers,‘ œ
6) the complex numbers.‚ œ

Greek Alphabet

It seems that mathematicians never have enough symbols. In particular, the usual Roman
alphabet does not supply enough symbols to denote variables of different types.
Accordingly, mathematicians find it necessary to reach out to other alphabet systems.
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Some of the older classic abstract algebra textbooks (notably by Nathan Jacobson) that this
author used as a student employ the  alphabet shown below.Fraktur

´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍ

š›œ#$Ÿ ¡¢£¤¥¦§¨©ª«¬−®¯°±³

However, as much as I enjoyed the added confusion that this alphabet provided while trying
to learn algebra, I will not use it in this book. (For example, compare the upper case A ( )´

with the upper case U ( ).)È

It is fair to say that all mathematicians (and most mathematics books) make extensive use of
the Greek alphabet, shown in the table below. If you intend to study mathematics seriously,
knowledge of this alphabet is essential.

A    alpha H    eta N    nu T    tau
B    beta     theta     xi     upsilon

    gamma I    iota O  o  omicron      phi
   

α ( / 7

" @ ) B 0 E 8

> # + F 9

? $  delta K    kappa     pi X    chi
E    epsilon     lambda P    rho     psi
Z    zeta M    mu     sigma     omega

, C 1 ;

% A - 3 G <

' . D 5 H =

Good luck and thanks for reading.
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Chapter 1
Introduction: The Big Picture

Perhaps the best place to start a discussion of any branch of mathematics is to first examine
the “big picture” as it were. We begin with an overall view of mathematics in general.

What is Mathematics?

Mathematics can be thought of as the study of . To illustrate, consider thesets with structure
following list, which suffers from some rather gross oversimplifications, but nonetheless
makes the point.

ñ  is the study of sets with a deductive structure.Mathematical logic
ñ  is the study of (generally)  sets, with a size structure.Combinatorics finite
ñ  is the study of (generally) finite sets with a relationship structure.Graph Theory
ñ  is the study of arbitrary sets with a size structure and possibly an orderSet theory

structure.
ñ  is the study of the integers—a set with an incredibly rich order andNumber theory

arithmetic structure.
ñ  is the study of sets with an order structure.Order and lattice theory
ñ  is the study of sets with a continuity structure.Point set topology
ñ  is the study of sets with a continuity structure and a relatedAlgebraic topology

algebraic structure.
ñ  is the study of the sets  with a differentiability structure.Mathematical analysis ‘8

ñ  is the study of general sets with a differentiability structure.Differential geometry
ñ  is the study of sets with a likelihood structure.Probability
ñ  is the study of sets with a structure imposed by a general measure.Measure theory
ñ  is the study of sets with an axiomEuclidean, affine and projective geometry

structure stemming from the notions of angle, parallelism and invariance under certain
types of transformations.

Last but certainly not least, we come to the subject of this series

ñ  is the study of sets with an  or  structure.Abstract algebra algebraic arithmetic
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Of course, these areas of mathematics overlap considerably and the boundaries between
areas are not at all well defined.

What is Algebra?

An algebraic structure is given to a set by defining one or more  on thealgebraic operations
set. With the exception of the operation of scalar multiplication in modules and vector
spaces, all of the algebraic operations that we will study are either nullary, unary or binary
operations on the set. Let us define these terms.

1) A  on a nonempty set  is simply an element of .nullary operation E E
2) A  on  is a function .unary operation E ?ÀE Ä E
3) A  on a nonempty set  is a function  that takes anbinary operation E 0ÀE ‚ E Ä E

ordered pair  of elements of  and produces another element of . there are twoÐ+ß ,Ñ E E
commonly used notations for binary operations. When  is used, weadditive notation
write the image of  under the operation  asÐ+ß ,Ñ 0

+ � ,

in which case the operation is called . When  is used,addition multiplicative notation
we write  in any of the following ways0Ð+ß ,Ñ

+, + ‡ , + † ,or or

in which case the operation is called . The first of these multiplicativemultiplicaton
notations  is the most common and is called .+, juxtaposition

When a set has two binary operations defined on it, we generally use addition for the
stronger (the operation that has more properties) operation and multiplication for the
weaker operation.

It might seem to you that defining a nullary operation on  as an element of the set  isE E
more trouble than it is worth. Why not just simply say “an element of ?” Well, manyE
mathematicians do, but there is a point in making this definition. Simply put, we want to be
able to refer to the algebraic structure as the collection of all algebraic operations on the set,
without needing to mention specific elements of the set. Put another way, the nullary and
unary operations are just as important as the binary operations and so should have “equal
status” as operations. While this discussion may not seem entirely clear at this point, we
will clarify the discussion with a concrete example when we define groups, later in the
book.

Algebraic operations can be very general. For example, for the set

\ œ Ö+ß ,×

we can define an operation called addition by setting

+ � + œ +ß + � , œ +ß , � + œ ,ß , � , œ ,

Admittedly, this is not very useful, but it demonstrates the point that any nonempty set can
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be given an algebraic structure. Obviously, abstract algebra is the study of  algebraicuseful
structures.

For example, you undoubtedly know that functions on the real numbers can be added and
multiplied. Thus, the set

Y ‘ ‘œ Ö0À Ä ± 0 × is a function

of all functions on  has two binary operations, called addition and multiplication, defined‘

for  by0ß 1 − Y

Ð0 � 1ÑÐBÑ œ 0ÐBÑ � 1ÐBÑ

Ð01ÑÐBÑ œ 0ÐBÑ1ÐBÑ

We can also take the negative of any function , defined by0

Ð!0ÑÐBÑ œ !Ð0ÐBÑÑ

The map  is a unary operation. The zero function  and the identity0 È Ð!0Ñ !ÐBÑ œ !
function  are nullary operations worth singling out because of their nice0ÐBÑ œ B
properties. Of course, by definition, any element of  is a nullary operation, but the otherY

elements don't have such nice algebraic properties.

Because of the properties of these binary, unary and nullary operations, which we will
discuss at the appropriate time, this structure is an example of an algebraic structure known
as a .ring

Abstract algebra can be divided into several different subareas, based on both the number
of algebraic operations defined on the set and on the  of these operations. Here isproperties
a partial list of the different types of algebraic structures that algebraists study. We will
study the structures shown in bold in some detail.

ñ " Semigroup (  binary)
ñ " " Monoid (  binary,  nullary)
ñ " " "    Group ( binary, unary, nullary)
ñ " " #    or  Ring ( binary, unary, nullary)#
ñ Integral Domain (special types of ring)
ñ # " #  (   and one unary  operation)Field binary, unary, nullary partial
ñ " " "  (     and one non-operation called scalarModule binary, unary, nullary

multiplication)
ñ " " "  (     and one non-operation called scalarVector Space binary, unary, nullary

multiplication)
ñ #  ( )Lattice binary
ñ # " #  (  )Boolean Algebra binary, unary, nullary

As you no doubt know, in the case of vector spaces (and modules), one of the operations,
called  is not a true operation. For example, if  is a vector space overscalar multiplication Z
the real numbners , then scalar multiplication is a function‘
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0À ‚ Z Ä Z‘

which is not a binary operation. We will discuss this further at the appropriate time.

What Are Algebraic Properties Like?

Algebraic operations in themselves are of little value unless we require that they satisfy
some . To get a feel for the types of properties that we will study throughout thisproperties
lecture series, here is a list of the properties of addition and multiplication for the real
numbers .‘

1   For all , , ,) ( )Associativity + , - − ‘

Ð+ � ,Ñ � - œ + � Ð, � -Ñ Ð+,Ñ- œ +Ð,-Ñand

2   For all , ,) ( )Commutivity + , − ‘

+ � , œ , � + +, œ ,+and

3   For all ,) ( )Distributivity +ß ,ß - − ‘

Ð+ � ,Ñ- œ +- � ,- +Ð, � -Ñ œ +, � +-and

4   There exists an element , called the) ( )Nullary Operations–Identity Elements ! − ‘

additive identity  element or  of  for whichzero ‘

! � + œ + � ! œ +

for all . Also, there exists an element , called the + − " −‘ ‘ multiplicative identity
(or sometimes just the ) for whichidentity

"+ œ +" œ +

for all .+ − ‘

5  For each) ( )One Unary Operation and One Partial Unary Operation–Inverses
+ − +‘, there is an element called the  or  of  and denoted byadditive inverse negative
!+, for which

+ � Ð!+Ñ œ Ð!+Ñ � + œ !

For each  element , there is an element called the nonzero + − ‘ multiplicative inverse
of  and denoted by , for which+ +�"

++ œ + + œ "�" �"

Because the set  together with the operations of addition and multiplication satisfies the‘

properties listed above, it is an example of a .field

You might be wondering why we bother to study algebraic structures in the rather abstract
setting of an arbitrary set  with a collection of algebraicwhose elements are unspecified
operations having certain properties. Why do we not simply study the “important” algebraic
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structures, such as the ones that come from numbers, functions, matrices, polynomials and
so on?

The reason is actually quite simple. Every time we prove some fact about an arbitrary
group for example, that fact applies at once to  groups. Therefore, we don't need to proveall
a version of that result for each important group separately. This is  at its finest.husbandry
Also, it tells us that the fact we proved does not depend on any specific properties of the
elements only of a group, such as numbers, functions or matrices, but rather it depends  on
the defining properties of the group structure. This is a very useful piece of information.

Common Themes Throughout Algebra

Once you have studied various types of algebraic structures, such as groups, rings, fields
and vector spaces, you will notice that there are a lot of  running throughoutcommon themes
each subject. Rather than realize this after studying these algebraic structures, it makes
more sense to realize this before studying these algebraic structures, to whatever extent this
is possible. So let us take a general look at these themes now. Note that they may not occur
in precisely the same order as we describe them here. Authors generally have some
discretion in this matter.

Let us imagine an unspecified type of algebraic structure, called a . Thus, widgetswidget
could be groups, or they could be rings, or they could be fields or they could be vector
spaces and so on.

The Definition of a Widget

When you study widgets, the first thing you will encounter is, of course, the definition of a
widget. This will be followed by a few of the basic consequences of the definition. For
example, one common consequence is the  of certain objects described in theuniqueness
definition. For instance, the definition of most widgets includes the existence of a special
identity element (which is a nullary operation) for each binary operation. It is a
consequence of the properties in the definition that identity elements are unique, so you are
likely to encounter a small theorem to this effect soon after the definition.

Note that because uniqueness of the identity element can be  from the definition ofproved
widget, the statement of uniqueness should not be (and never is) included as part of the
definition. Definitions are supposed to be as lean as possible, that is, they are generally
intended to contain exactly what is required .and no more

Subwidgets

The next theme you may encounter is the concept of a subwidget (sub , sub ,group ring
sub , sub  and so on). The idea is simple: If  is a widget and  is a nonemptyfield space [ W
subset of , it is natural to wonder whether the algebraic operations defined on  can be[ [
restricted to the subset , making it into a widget as well. If so, then  is called aW W
subwidget of . Note that  may be a widget under  operations as well, but that does[ W other
not make it a  of .subwidget [
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Making New Widgets from Old Widgets

One of the next themes you are likely to encounter is that of making new widgets from old
widgets.

The Product of Widgets

One way is to do this that applies to many (but not all) algebraic structures is to use the
cartesian product, since widgets are sets. If  and  are widgets, then the cartesian[ [" #

product  is the set of ordered pairs of widget elements[ ‚[" #

[ ‚[ œ ÖÐ=ß >Ñ ± = − [ ß > − [ ×" # " #

So if  denotes a binary widget operation, then we can try to define the product of ordered‡
pairs , that is, we can setcomponentwise

Ð=ß >Ñ ‡ Ð?ß @Ñ œ Ð= ‡ ?ß > ‡ @Ñ

This product construction works for groups, rings and vector spaces, for example, but it
does not work for fields.

Exponential Widgets

Another way to make new widgets from old widgets is to take  (although notexponentials
all mathematicians use this terminology). If  is a widget and  is a nonempty set, then[ \
the set of all set  from  to , denoted by  is often a widget. The key is that afunctions \ [ [\

widget operation on  can be performed on the  of the elements under the functions[ images
in , which lie in .[ [\

As a simple example, if , the integers, then we can define the sum and product of[ œ ™

functions in  by™\

Ð0 � 1ÑÐBÑ œ 0ÐBÑ � 1ÐBÑ

Ð01ÑÐBÑ œ 0ÐBÑ1ÐBÑ

for all . Now, as we will see, the integers  form a ring under the operations ofB − \ ™

ordinary addition and multiplication and so does the set  under the operations defined™\

above.

We should note that sometimes  is not quite a widget, but it is another “weaker”[\

algebraic structure. For example, the real numbers  form a field under the operations of‘

ordinary addition and multiplication, but the set  does not quite make it to a field—it is‘\

merely a ring, which is a weaker algebraic stucture.

Quotient Widgets

Another way to make new widgets from old widgets is to take quotients. Quotient widgets
can cause quite some confusion when they are first encountered. Let us see if we can
explain the general idea behind quotient widgets. Suppose that  is a widget. Of course,[
[ [ is also a set. Now, we are interested in  the set  into nonempty,partitioning
nonoverlapping blocks
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c œ ÖF ßF ßF ßá×" # $

as shown in Figure 1, in such a way that we can “lift” the widget operation(s) from the
elements blocks of  to the  of the partition .[ c

Figure 1

Let us assume that widgets have only one operation, which we will call the product
(denoted by juxtaposition). There is one obvious way to try to perform this lifting process.
Namely, we define the product  of two  by taking one element from each block,F F3 4 blocks
say

+ − F + − F3 3 4 4and

taking their widget product  and then finding the block that contains this product, say it+ +3 4

is . Then we  the product of these two blocks byF5 define

F F œ F3 4 5

Now we can ask whether this product of blocks satisfies the widget properties and so makes
the set  of blocks into a widget as well.c

However, there is a potential problem here. The way we defined the product of blocks is
ambiguous. Do you see why?

Suppose someone else picks  elements from the blocks  and , say  anddifferent F F + − F3 4 33
w

+ − F + + + +4 3 4
w w w

4 3 4. Then there is no guarantee that the product  and  are in the same block of
c. If these two products are in different blocks, then this attempt at defining the product of
blocks fails completely. Put more formally, the product is not .well defined

If we can resolve this potential issue, then the set  becomes a widget under this “lifted”c

operation and is called a  of . Thus, we have quotient groups, quotientquotient widget [
rings and quotient spaces. Quotient fields do not exist for reasons similar to those that cause
the product construction to fail in the case of fields.

Functions Between Widgets

Another common theme in the study of algebraic structures is that of a structure-preserving
function between widgets. If  is a function from the widget  to the widget ,2À[ Ä Z [ Z
then  is structure preserving if2
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1) For any binary widget operation (denoted by juxtaposition), we have

2ÐA A Ñ œ 2ÐA Ñ2ÐA Ñ" # " #

For example, for addition of real numbers, we require that

2Ð+ � ,Ñ œ 2Ð+Ñ � 2Ð,Ñ

2) For any unary operation , we haveA È ?ÐAÑ

2Ð?ÐAÑÑ œ ?Ð2ÐAÑÑ

For example, for the unary operation of taking the negative of a real number, we
require that

2Ð!AÑ œ !2ÐAÑ

3) A nullary operation identifies a specific element in a widget. if that element is denoted
by , then preservation of this nullary operation is"

2Ð" Ñ œ "[ Z

where  is the specified element in  and  is the specified element in ." [ " Z[ Z

Many mathematicians would say that the concept of a structure-preserving function
between widgets is almost as important as the concept of a widget itself. It is hard to
appreciate why this might be true at this stage in the game, but suffice it to say that there is
an entire branch of mathematics that attempts to make just this point! It is called category
theory.

The structure-preserving functions between widgets are called . There are groupmorphisms
morphisms, ring morphisms, field morphisms, vector space morphisms and so on. Each of
these has a more specific terminology. For instance, group and ring morphisms are called
homomorphisms embeddings. Field morphisms are called  and vector space and module
morphisms are called .linear transformations

Representations of the Elements of One Widget By the Elements of Another
Widget

There is one final and  common theme used throughout mathematics:extremely important
that is the technique of . Specifically, often a great deal can be learned byrepresentation
representing one type of mathematical object as another type of mathematical object.

For example, a real number  can also be thought of as (or represented as) a ,< − ‘ function
namely, multiplication by , which we write as . Thus,  is defined by< . .< <

. ‘ ‘ .< <À Ä ß ÐBÑ œ <B

The function  is  (one-to-one and onto) and is referred to in some contexts as .< bijective left
translation by . Note that if we know , then we also know , since< <.<
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< œ Ð"Ñ.<

As another example, in elementary linear algebra, we think of matrices such as

Q œ
" #
$ %Œ 

not just as rectangular arrays of numbers that can be added and multiplied together, but also
as  (multiplication by ) from  to ,linear transformation Q ‘ ‘# #

QÀ Ä ß Q œ
+ + � #,
, $+ � %,

‘ ‘# # Œ  Œ 
In general, a representation of the elements in a widget  by the elements in another widgetE
F is generally defined by a function

-À E Ä F

called the  for the representation. Thus,  is represented by therepresentation map + − E
element  in .-Ð+Ñ F

Now, if the representation map is not injective (one-to-one), then there will be distinct
elements  and  in  that are represented by the same element+ + E" #

, œ Ð+ Ñ œ Ð+ Ñ- -" #

in . You might first think that this would ruin the representation, but there are in factF
many important representations that are not injective, as we will see. When the
representation map is injective, the representation is said to be .faithful

Representing one type of mathematical object by another type of mathematical object is an
extremely important technique that we will employ to great advantage in this book.


